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This proof resides in “contrib” because it has not completed the vetting process.

Proves soundness of make_randomized_response in mod.rs at commit f5bb719 (outdated1), a construc-
tor taking a category set categories and probability prob. The mechanism returned by make_randomized_response
takes in a data set arg (a single category), and...

• ...if arg is in categories, the mechanism truthfully returns the same value arg with probability prob,
otherwise it lies by selecting one of the other categories uniformly at random.

• ...if arg is not in categories, it returns a category chosen uniformly at random.

PR History
• Pull Request #490

1 Hoare Triple

Preconditions
• Variable categories must be a set with members of type T

• Variable prob must be of type QO

• Type QO must have trait Float

• The bit representation of type QO must support ExactIntCast to and from usize

Pseudocode

1 def make_randomized_response(categories: set[T], prob: QO):
2 input_domain = AtomDomain(bool)
3 output_domain = AtomDomain(bool)
4 input_metric = DiscreteMetric ()
5 output_measure = MaxDivergence(QO)
6

7 categories = list(categories)
8

9 if len(categories) < 2: #
10 raise ValueError("expected at least two categories")
11

12 num_categories = len(categories)
13

1See new changes with git diff f5bb719..6744ed1 rust/src/measurements/randomized_response/mod.rs
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14 if not (1 / num_categories <= prob < 1): #
15 raise ValueError("probability must be within [1/ num_categories , 1)")
16

17 # prepare constant:
18 c = p.inf_div ((1).neg_inf_sub(prob)) \
19 .inf_mul(num_categories.inf_sub (1)) \
20 .inf_ln ()
21

22 def privacy_map(d_in: u32) -> QO:
23 if d_in == 0:
24 return 0
25 else:
26 return c
27

28 def function(truth: bool) -> bool: #
29 index = categories.index(truth)
30 sample = usize.sample_uniform_int_below(
31 len(num_categories) - (0 if index == -1 else 1))
32

33 if index != -1 and sample >= index:
34 sample += 1
35

36 lie = categories[sample]
37

38 be_honest = sample_bernoulli_float(prob , false)
39 is_member = index != -1
40 return truth if be_honest and is_member else lie
41

42 return Measurement(input_domain , output_domain , function , input_metric , output_measure ,
privacy_map)

Postcondition
Theorem 1.1. For every setting of the input parameters (categories, prob, T, QO) to
make_randomized_response such that the given preconditions hold,
make_randomized_response raises an exception (at compile time or run time) or returns a valid measure-
ment. A valid measurement has the following property:

1. (Privacy guarantee). For every pair of elements x, x′ in input_domain and for every pair (d_in, d_out),
where d_in has the associated type for input_metric and d_out has the associated type for
output_measure, if x, x′ are d_in-close under input_metric, privacy_map(d_in) does not raise an
exception, and privacy_map(d_in) ≤ d_out, then function(x), function(x′) are d_out-close under
output_measure.

2 Proof
Proof. (Privacy guarantee.)

The proof assumes the following lemma.

Lemma 2.1. sample_uniform_int_below and sample_bernoulli_float satisfy their postcondi-
tions.

sample_uniform_int_below and sample_bernoulli_float can only fail due to lack of system entropy.
This is usually related to the computer’s physical environment and not the dataset. The rest of this proof is
conditioned on the assumption that these functions do not raise an exception.

Let x and x′ be datasets that are d_in-close with respect to input_metric. Here, the metric is
DiscreteMetric which enforces that d_in ≥ 1 if x ̸= x′ and d_in = 0 if x = x′. If x = x′, then the
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output distributions on x and x′ are identical, and therefore the max-divergence is 0.
Now consider the case where x ̸= x′. For shorthand, we let p represent prob, the probability of returning

the input, and t denote the number of categories. Note that all categories must be unique as the input data
type is a set. This means duplicate categories cannot influence the output distribution.

t must be at least two, by pseudocode line 9, as any fewer would not be useful. p is restricted to [1/t, 1.0)
by pseudocode line 14, as any less would not be useful.

We’ll first consider all possible output probabilities, and then use this to upper bound the ratio of any
two probabilities. For any outcome y ∈ candidates, the probability of observing y is one of three values:

1. When the mechanism is honest:
Pr[M(x) = y|y = x] = p

2. When the mechanism lies:

Pr[M(x) = y|y ̸= x ∧ x ∈ candidates] =
1− p

t− 1

3. When the input is not in the category set, the output is uniformly sampled from the candidates:

Pr[M(x) = y|y ̸= x ∧ x ̸∈ candidates] =
1

t

Lemma 2.2. The probability of case 3 is bounded by cases one and two:

1− p

t− 1
≤ 1

t
≤ p (1)

Proof. 1/t is bounded above by case one (p) due to pseudocode line 14. Reusing 14, 1−p
t−1 ≤ 1−1/t

t−1 = 1
t .

Therefore 1/t is also bounded below by case two (1−p
t−1 ).

By 2.2, the divergence is never maximized when the input is not in the category set, which simplifies the
following analysis.

We now consider the max-divergence of the mechanism over all choices of neighboring datasets.

max
x∼x′

D∞(M(x),M(x′)) (2)

=max
x∼x′

max
S⊆Supp(M(x))

ln

(
Pr[M(x) ∈ S]

Pr[M(x′) ∈ S]

)
(3)

≤max
x∼x′

max
y∈Supp(M(x))

ln

(
Pr[M(x) = y]

Pr[M(x′) = y]

)
Lemma 3.3 [1] (4)

= ln

(
max

(
p · (t− 1)

1− p
,
(1− p) · (t− 1)

p
,
(1− p) · (t− 1)

(1− p) · (t− 1)

))
(5)

= ln

(
p · (t− 1)

1− p

)
(6)

The terms in the maximum on line 5 cover all combinations of x, x′ and y. Respectively:

1. When y = x.

2. When y ̸= x and y = x′.

3. When y ̸= x and y ̸= x′.

3



Pseudocode line 17 implements this bound with conservative rounding towards positive infinity. When
d_in > 0 and no exception is raised in computing c = privacy_map(d_in), then ln

(
p·(t−1)
1−p

)
≤ c.

Therefore it has been shown that for every pair of elements x, x′ ∈ input_domain and every dDM (x, x′) ≤
d_in with d_in ≥ 0, if x, x′ are d_in-close then function(x), function(x′) are privacy_map(d_in)-close
under output_measure (the Max-Divergence).
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