
fn make_report_noisy_max_gumbel

Michael Shoemate

April 17, 2024

This proof resides in “contrib” because it has not completed the vetting process.

Proves soundness of make_report_noisy_max_gumbel in mod.rs at commit f5bb719 (outdated1).
make_report_noisy_max_gumbel returns a Measurement that noisily selects the index of the greatest score,
from a vector of input scores. This released index can be later be used to index into a public candidate set
(postprocessing).

Vetting History
• Pull Request #456

The naive implementation samples some index k from a categorical distribution, with probabilities as-
signed to each candidate relative to their score. We may use inverse transform sampling to select the smallest
index k for which the cumulative probability is greater than some U ∼ Uniform(0, 1).

M(s) = argmink

k∑
i

pi >= U (1)

The probability of index k being selected is the normalization of its likelihood esk/τ . As a candidate’s
score sk increases, the candidate becomes exponentially more likely to be selected.

pk =
esk/τ∑
i e

si/τ
(2)

This equation introduces a new temperature parameter, τ , which calibrates how distinguishable scores
are from each other. As temperature increases, the categorical output distribution tends towards entropy-
/uniformity and becomes more privacy preserving. As temperature decreases, the categorical distribution
tends towards a one-hot vector, becoming less private. Temperature is related to ϵ and the sensitivity (∆)
of the scoring function as follows:

τ = ∆/ϵ (3)

When ϵ increases, temperature decreases, and candidates become more distinguishable from each other. We
also divide scores by their global sensitivity to normalize the sensitivity to one. In the differential privacy
literature for the exponential mechanism, the sensitivity is often multiplied by two. In OpenDP this factor
is bundled into the ∆ term, which is expressed in terms of a metric that captures monotonicity.

1See new changes with git diff f5bb719..5bb608a rust/src/measurements/gumbel_max/mod.rs

1

https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/measurements/fn.make_report_noisy_max_gumbel.html
https://github.com/opendp/opendp/blob/f5bb719/rust/src/measurements/gumbel_max/mod.rs
https://github.com/opendp/opendp/pull/456

1 Gumbel Reparameterization
In practice, computing esi/τ is prone to zero underflow and overflow. Specifically, a scaled score of just −709
underflows to zero and +710 overflows to infinity when stored in a 64-bit float. A simple improvement is
to shift the scores by subtracting the greatest score from all scores. In idealized arithmetic, the resulting
probabilities are not affected by shifts in the underlying scores. On finite data types, this shift prevents a
catastrophic overflow, but makes underflow more likely, causing tail values of the distribution to round to
zero.

The inverse transform sampling is also subject to accumulated rounding errors from the arithmetic and
sum, which influence the likelihood of being chosen.

The Gumbel-max trick may instead be used to privately select an index. Let K = argmaxkGk, a random
variable representing the selected index. Denote the kth noisy score as Gk ∼ Gumbel(µ = sk/τ). K can be
sampled via an inverse transform, where uk is sampled iid uniformly from (0, 1):

M(s) = argmaxk(sk/τ − log(−log(uk))) (4)

Theorem 1.1. Sampling from K is equivalent to sampling from the softmax, because P (K = k) = pk. [1]

P (K = k) = P (Gk = maxiGi) by definition of K
= P (−log(Zk/N) = maxi − log(Zk/N)) by 1.2
= P (log(Zk/N) = minilog(Zk/N)) since max− ai = −miniai

= P (Zk = miniZi) simplify monotonic terms
= P (Zk ≤ mini̸=kZi)

= P (Zk ≤ Q) by 1.3 where Q ∼ Exp(
∑
i ̸=k

pi)

=
pk

pk +
∑

i ̸=k pi
by 1.4

= pk since pk +
∑
i ̸=k

pi = 1

Lemma 1.2. Gk = −log(Zk/N) where Zk ∼ Exp(pk) and normalization term N =
∑

i e
si/τ .

Gk = sk/τ − log(−log(Uk)) Gumbel PDF centered at sk/τ

= log(esk/τ)− log(−log(Uk))

= log(pkN)− log(−log(Uk)) since pk = esk/τ/N

= log(pkN/(−log(Uk)))

= −log(−log(Uk)/(pkN))

= −log(Zk/N) substitute Zk = −log(Uk)/pk

Lemma 1.3. If X1 ∼ Exp(λ1), X2 ∼ Exp(λ2) and Z ∼ Exp(λ1 + λ2), then min(X1, X2) ∼ Z.

P (min(X1, X2) ≥ x) = P (X1 ≥ x)P (X2 ≥ x) by independence

= e−λ1xe−λ2x substitute exponential density

= e−(λ1+λ2)x

= P (Z ≥ x) substitute exponential density

2

Lemma 1.4. If X1 ∼ Exp(λ1), X2 ∼ Exp(λ2), then P (X1 ≤ X2) =
λ1

λ1+λ2
.

P (X1 ≤ X2) =

∫ ∞

0

∫ ∞

x1

λ1λ2e
−λ1x1e−λ2x2 dx1dx2

=

∫ ∞

0

−λe−(λ1+λ2)x1 dx1

=
λ1

λ1 + λ2

1.1 Metric
We need a metric that captures the distance between score vectors u and v respectively on neighboring
datasets. The ith element of each score vector is the score for the ith candidate. The sensitivity of the scoring
function can be measured in terms of the L∞ norm, which we name the LInfDistance. It characterizes the
greatest that any one score may change:

∆∞ = max
u∼v

d∞(f(u), f(v)) = max
u∼v

max
i

|f(u)i − f(v)i| (5)

Unfortunately, this choice of metric always results in a loosening by a factor of 2 when evaluating the privacy
guarantee of the exponential mechanism. This is because both the ith likelihood and normalization term may
vary in opposite directions, resulting in a more distinguishing event. However, this loosening is not necessary
if we can prove that the scoring function is monotonic, because the ith likelihood and normalization term
will always vary in the same direction.

We instead use a slight adjustment to this metric, RangeDistance, characterizing the greatest difference
in scores:

∆Range = max
u∼v

dRange(f(u), f(v)) = max
u∼v

max
ij

|(f(u)i − f(v)i)− (f(u)j − f(v)j)| (6)

Consider when the scoring function is not monotonic. The sensitivity is maximized when ui− vi and uj − vj
vary maximally in opposite directions, resulting in the same loosening factor of 2. On the other hand, when
the scoring function is monotonic, the sign of the ui − vi term matches the sign of the uj − vj term, and
their magnitudes cancel. Therefore, when the scorer is monotonic, the sensitivity is maximized when one
term is zero. It is shown in 3.1 that a tighter analysis of the exponential mechanism is compatible with a
score vector whose sensitivity is expressed in terms of this metric.

Given that both the infinity-distance and range-distance are useful, the mechanism still uses the infinity-
distance, but an additional boolean is stored in the metric to indicate when the score is monotonic.

2 Hoare Triple

Precondition
• TIA (input atom type) is a type with traits Number and CastInternalRational

• QO (output distance type) is a type with traits Float, CastInternalRational and DistanceConstant
from type TIA

Function

1 def make_report_noisy_max_gumbel(
2 input_domain: VectorDomain[AtomDomain[TIA]],
3 input_metric: RangeDistance[TIA],
4 scale: QO,

3

https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/traits/trait.Number.html
https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/traits/samplers/trait.CastInternalRational.html
https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/traits/trait.Float.html
https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/traits/samplers/trait.CastInternalRational.html
https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/traits/trait.DistanceConstant.html

5 optimize: Union[Literal["max"], Literal["min"]]
6) -> Measurement:
7 if input_domain.element_domain.nullable:
8 raise ValueError("input domain must be non -nullable")
9

10 if scale < 0:
11 raise ValueError("scale must be non -negative")
12

13 if optimize == "max":
14 sign = +1
15 elif optimize == "min":
16 sign = -1
17 else:
18 raise ValueError("must specify optimization")
19

20 scale_frac = Fraction(scale)
21

22 def function(scores: List[TIA]):
23 def map_gumbel(score):
24 return GumbelPSRN(shift=sign * Fraction(score), scale=scale_frac)
25 gumbel_scores = map(map_gumbel , scores)
26

27 def reduce_best(a, b):
28 return a if a[1]. greater_than(b[1]) else b
29 return reduce(reduce_best , enumerate(gumbel_scores))[0]
30

31 def privacy_map(d_in: TIA):
32 # convert to range distance
33 # will multiply by 2 if not monotonic
34 d_in = input_metric.range_distance(d_in)
35

36 d_in = QO.inf_cast(d_in)
37 if d_in < 0:
38 raise ValueError("input distance must be non -negative")
39

40 if d_in == 0:
41 return 0
42

43 return d_in.inf_div(scale)
44

45 return Measurement(
46 input_domain=input_domain ,
47 function=function ,
48 input_metric=input_metric ,
49 output_metric=MaxDivergence(QO),
50 privacy_map=privacy_map ,
51)

Postcondition
For every setting of the input parameters input_domain, input_metric, scale, optimize, TIA, QO to
make_report_noisy_max_gumbel such that the given preconditions hold, make_report_noisy_max_gumbel
raises an exception (at compile time or run time) or returns a valid measurement. A valid measurement has
the following property:

1. (Privacy guarantee). For every pair of elements u, v in input_domain and for every pair (d_in, d_out),
where d_in has the associated type for input_metric and d_out has the associated type for
output_measure, if u, v are d_in-close under input_metric, privacy_map(d_in) does not raise an
exception, and privacy_map(d_in) ≤ d_out, then function(u), function(v) are d_out-close under
output_measure.

4

3 Proof

3.1 Privacy Guarantee
To ensure that the Gumbel sample is valid, the input_domain is required to be non-null. The scale is also
required to be positive.

Lemma 3.1. By the definition of function in the pseudocode, for any x in input_domain,
Pr[function(x) = i] = Pr[argmaxk(uk/τ − ln(− ln(Uk))) = i].

Proof. For each score sk, function samples a Gumbel random variable centered at sign · sk/τ . The choice
of sign does not affect the privacy guarantee, so we omit it from further analysis. Sampling from a Gumbel
distribution is equivalent to adding a draw from − ln(− ln(Uk)), where Uk ∼ Uniform(0, 1). The algorithm
only returns the index of the maximum Gumbel random variable, therefore the probability of returning i is
the probability that the ith Gumbel random variable is the maximum.

Lemma 3.2. Assume u, v in input_domain. Then ln

(∑
i exp(

ϵvi
∆)∑

i exp(
ϵui
∆)

)
≤ ϵmaxj(vj−uj)

∆ .

Proof.

ln

(∑
i exp

(
ϵvi
∆

)∑
i exp

(
ϵui

∆

)) = ln

∑i exp
(

ϵ(vi−ui+ui)
∆

)
∑

i exp
(
ϵui

∆

)

= ln

∑i exp
(

ϵ(vi−ui)
∆

)
exp
(

ϵ(ui)
∆

)
∑

i exp
(
ϵui

∆

)

≤ ln

exp
(

ϵmaxj(vj−uj)
∆

)∑
i exp

(
ϵ(ui)
∆

)
∑

i exp
(
ϵui

∆

)

=
ϵmaxj(vj − uj)

∆

Assume u, v in input_domain are d_in-close under LInfDistance and privacy_map(d_in) ≤ d_out.

max
u∼v

D∞(function(u), function(v))

= max
u∼v

max
i

ln

(
Pr[function(u) = i]

Pr[function(v) = i]

)
by MaxDivergence

= max
u∼v

max
i

ln

(
Pr[argmaxk(uk/τ − ln(− ln(Uk))) = i]

Pr[argmaxk(vk/τ − ln(− ln(Uk))) = i]

)
by 3.1, substitute function

5

https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/metrics/struct.LInfDistance.html
https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/measures/struct.MaxDivergence.html

Assume privacy_map(d_in) ≤ d_out = ϵ. For convenience, we’ll shorten ∆Range to ∆, the sensitivity wrt
the range-distance. If monotonic, ∆ = d_in, else ∆ = 2 · d_in. Now substitute the inequality that τ ≥ ∆/ϵ.

≤ max
u∼v

max
i

ln

(
Pr[argmaxk(ukϵ/∆− ln(− ln(Uk))) = i]

Pr[argmaxk(vkϵ/∆− ln(− ln(Uk))) = i]

)
= max

u∼v
max

i
ln

(
exp
(
ϵui

∆

)∑
k exp

(
ϵuk

∆

)/ exp
(
ϵvi
∆

)∑
k exp

(
ϵvk

∆

)) by 1

= max
u∼v

max
i

ln

(
exp
(
ϵui

∆

)
exp
(
ϵvi

∆

) ∑k exp
(
ϵvk
∆

)∑
k exp

(
ϵuk

∆

))

= max
u∼v

max
i

ln

(
exp
(
ϵui

∆

)
exp
(
ϵvi

∆

))+ ln

(∑
k exp

(
ϵvk

∆

)∑
k exp

(
ϵuk

∆

))

= max
u∼v

max
i

ϵ(ui − vi)

∆
+ ln

(∑
k exp

(
ϵvk

∆

)∑
k exp

(
ϵuk

∆

))

≤ max
u∼v

max
i

ϵ(ui − vi)

∆
+

ϵmaxj(vj − uj)

∆
by 3.2

≤ ϵmax
u∼v

max
ij

|(ui − vi)− (uj − vj)|

∆

≤ ϵ by RangeDistance

= d_out

It has been shown that function(u) and function(v) are d_out-close under output_measure under the
definitions of function and privacy_map, and the conditions on the input distance and privacy map.

References
[1] Andrés Muñoz Medina and Jennifer Gillenwater. Duff: A dataset-distance-based utility function family

for the exponential mechanism. ArXiv, abs/2010.04235, 2020.

6

	Gumbel Reparameterization
	Metric

	Hoare Triple
	Proof
	Privacy Guarantee

