
fn make_binary_randomized_response_bool

Vicki Xu, Hanwen Zhang, Zachary Ratliff

April 17, 2024

This proof resides in “contrib” because it has not completed the vetting process.

Proves soundness of make_binary_randomized_response_bool in mod.rs at commit f5bb719 (out-
dated1).

make_randomized_response_bool accepts a parameter prob of type Q and a parameter constant_time
of type bool. The function on the resulting measurement takes in a boolean data point arg and returns
the truthful value arg with probability prob, or the complement !arg with probability 1 − prob. The
measurement function makes mitigations against timing channels if constant_time is set.

Warning 1 (Code is not constant-time). make_randomized_response_bool takes in a boolean
constant_time parameter that protects against timing attacks on the Bernoulli sampling procedure.
However, the current implementation does not guard against other types of timing side-channels that
can break differential privacy, e.g., non-constant time code execution due to branching.

PR History
• Pull Request #490

1 Hoare Triple

Preconditions
• Variable prob must be of type QO

• Variable constant_time must be of type bool

• Type bool must have trait SampleBernoulli<QO>

• Type QO must have trait Float

Pseudocode

1 def make_randomized_response_bool(prob: QO, constant_time: bool):
2 input_domain = AllDomain(bool)
3 output_domain = AllDomain(bool)
4 input_metric = DiscreteMetric ()
5 output_measure = DiscreteDivergence(QO)
6

7 if (prob < 0.5 or prob >= 1):

1See new changes with git diff f5bb719..5bb608a rust/src/measurements/randomized_response/mod.rs

1

https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/measurements/fn.make_binary_randomized_response_bool.html
https://github.com/opendp/opendp/blob/f5bb719/rust/src/measurements/randomized_response/mod.rs
https://github.com/opendp/opendp/pull/490
https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/traits/samplers/bernoulli/trait.SampleBernoulli.html
https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/traits/trait.Float.html

8 raise Exception("probability must be in [0.5, 1)")
9

10 c = QO.inf_ln(prob.inf_div (1. neg_inf_sub(prob)))
11 def privacy_map(d_in: IntDistance) -> QO:
12 if d_in == 0:
13 return 0
14 else:
15 return c
16

17 def function(arg: bool) -> bool:
18 return arg ^ !bool.sample_bernoulli(prob , constant_time)
19

20 return Measurement(input_domain , output_domain , function , input_metric , output_measure ,
privacy_map)

Postcondition
For every setting of the input parameters (prob, constant_time, QO) to
make_binary_randomized_response_bool such that the given preconditions hold,
make_binary_randomized_response_bool raises an exception (at compile time or run time) or returns a
valid measurement. A valid measurement has the following property:

1. (Privacy guarantee). For every pair of elements u, v in input_domain and for every pair (d_in, d_out),
where d_in has the associated type for input_metric and d_out has the associated type for
output_measure, if u, v are d_in-close under input_metric, privacy_map(d_in) does not raise an
exception, and privacy_map(d_in) ≤ d_out, then function(u), function(v) are d_out-close under
output_measure.

2 Proof
Proof.

1. (Privacy guarantee.)

Note 1 (Proof relies on correctness of Bernoulli sampler). The following proof makes use of
the following lemma that asserts the correctness of the Bernoulli sampler function.

Lemma 2.1. If system entropy is not sufficient, sample_bernoulli raises an error. Oth-
erwise, sample_bernoulli(prob, constant_time), the Bernoulli sampler function used in
make_randomized_response_bool, returns true with probability (prob) and returns false
with probability (1 - prob).

sample_bernoulli can only fail when the OpenSSL pseudorandom byte generator used in its im-
plementation fails due to lack of system entropy. This is usually related to the computer’s physi-
cal environment and not the dataset. The rest of this proof is conditioned on the assumption that
sample_bernoulli does not raise an exception.

Let v and w be datasets that are d_in-close with respect to input_metric. Here, the metric is
DiscreteMetric which enforces that d_in ≥ 1 if v ̸= w and d_in = 0 if v = w. If v = w, then
the output distributions on v and w are identical, and therefore the max-divergence is 0. Consider
v ̸= w and assume without loss of generality that v = true and w = false. For shorthand, we let
p represent prob, the probability that sample_bernoulli returns true. Observe that p = [0.5, 1.0)
otherwise make_randomized_response_bool raises an error.

2

We now consider the max-divergence D∞(Y ||Z) over the random variables Y = function(v) and
Z = function(w).

D∞(Y ||Z) = max
S⊆Supp(Y)

[
ln

(
Pr[Y ∈ S]

Pr[Z ∈ S]

)]

= max

(
ln

(
Pr[Y = true]
Pr[Z = true]

)
, ln

(
Pr[Y = false]
Pr[Z = false]

))

= max

(
ln

(
p

1− p

)
, ln

(
1− p

p

))

= ln

(
p

1− p

)
We let c = privacy_map(d_in) = QO.inf_ln(prob.inf_div(1.neg_inf_sub(prob))). The com-
putation of c rounds upward in the presence of floating point rounding errors. This is because
1.neg_inf_sub(prob) appears in the denominator, and to ensure that the bound holds even in the
presence of rounding errors, the conservative choice is to round down (so the quantity as a whole is
bounded above). Similarly, inf_div and inf_ln round up.

When d_in > 0 and no exception is raised in computing c = privacy_map(d_in), then ln
(

p
1−p

)
≤ c.

Therefore we’ve shown that for every pair of elements v, w ∈ {false, true} and every dDM (v, w) ≤
d_in with d_in ≥ 0, if v, w are d_in-close then function(v), function(w) ∈ {false, true} are
privacy_map(d_in)-close under output_metric (the Max-Divergence).

3

	Hoare Triple
	Proof

