trait SampleBernoulli

Vicki Xu, Hanwen Zhang, Zachary Ratliff

March 13, 2024

This proof resides in "contrib" because it has not completed the vetting process.

Warning 1 (Code is not constant-time). sample_bernoulli takes in a boolean constant_time parameter to protect against timing attacks on the Bernoulli sampling procedure. However, the current implementation does not guard against other types of timing side-channels that can break differential privacy, e.g., non-constant time code execution due to branching.

PR History

- Pull Request \#473

This document proves that the implementations of SampleBernoulli in mod.rs at commit f5bb719 (outdated ${ }^{1}$) satisfy the definition of the SampleBernoulli trait.

Definition 0.1. The SampleBernoulli<T> trait defines a function sample_bernoulli, where the data type of the probability is T .

For any setting of the input parameters prob of type T restricted to $[0,1]$, and constant_time of type bool, sample_bernoulli either

- raises an exception if there is a lack of system entropy or constant_time is not supported,
- returns out where out is \top with probability prob, otherwise \perp.

If constant_time is set, the implementation's runtime is constant.
There are two impl's (implementations): one for float probabilities, and one for rational probabilities. To prove correctness of each impl, we prove correctness of the implementation of sample_bernoulli.

Contents

1 impl for Float Probability 2
1.1 Hoare Triple 2
1.2 Proof 3
2 impl for Rational Probability 4
2.1 Hoare Triple 4
2.2 Proof 5

[^0]
1 impl for Float Probability

This corresponds to impl<T> SampleBernoulli<T> for bool where T: Float in Rust. At a high level, sample_bernoulli considers the binary expansion of prob into an infinite sequence a_i, like so: prob $=$ $\sum_{i=0}^{\infty} \frac{a_{i}}{2^{i+1}}$. The algorithm samples $I \sim \operatorname{Geom}(0.5)$ using an internal function sample_geometric_buffer, then returns a_{I}.

1.1 Hoare Triple

Preconditions

- User-specified types:
- Variable prob must be of type T
- Variable constant_time must be of type bool
- Type T has trait Float. Float implies there exists an associated type T::Bits (defined in FloatBits) that captures the underlying bit representation of T.
- Type T: :Bits has traits PartialOrd and ExactIntCast<usize>
- Type usize has trait ExactIntCast<T::Bits>

Pseudocode

```
# returns a single bit with some probability of success
def sample_bernoulli(prob : T, constant_time : bool) -> bool:
    if prob == 1:
        return True
    # prepare for sampling first heads index by coin flipping
    max_coin_flips = usize.exact_int_cast(T::EXPONENT_BIAS) + \
                usize.exact_int_cast(T::MANTISSA_BITS)
    # find number of bits to sample, rounding up to nearest byte (smallest sample size)
    buffer_len = max_count_flips.inf_div(8)
    # repeatedly flip fair coin and identify 0-based index of first heads
    first_heads_index = sample_geometric_buffer(buffer_len, constant_time)
    # if no events occurred, return early
    if first_heads_index is None:
        return False
    # find number of zeroes in binary rep. of prob
    leading_zeroes = T::EXPONENT_BIAS - 1 - prob.raw_exponent()
    # case 1: index into the leading zeroes
    if first_heads_index < leading_zeros:
        return False
    # case 2: index into implicit bit directly to left of mantissa
    if first_heads_index == leading_zeroes:
        return prob.raw_exponent() != 0
    # case 3: index into out-of-bounds/implicitly-zero bits
    if first_heads_index > leading_zeroes + MANTISSA_BITS:
        return False
    # case 4: index into mantissa
    mask = (1 << (T::MANTISSA_BITS + leading_zeroes - first_heads_index))
    return (prob.to_bits() & mask) != 0
```


Postcondition

The postcondition is supplied by 0.1 .

1.2 Proof

Proof. To show the correctness of sample_bernoulli we observe first that the base- 2 representation of prob is of the form
leading_zeroes || implicit_bit || mantissa || trailing_zeroes
and is represented exactly as a normal floating-point number. The IEEE-754 standard represents a normal floating-point number using an exponent E, and a mantissa m, using a base- 2 analog of scientific notation.
Definition 1.1 (Floating-Point Number). A (k, ℓ)-bit floating-point number z is represented as

$$
z=(-1)^{s} \cdot(B \cdot M) \cdot\left(2^{E}\right)
$$

where

- s is used to represent the sign of z
- B is the implicit bit; 1 for normal floating-point numbers and 0 for subnormal floating point numbers
- $M \in\{0,1\}^{k}$ is a k-bit string representing the part of the mantissa to the right of the radix point, i.e.,

$$
\text { 1. } M=\sum_{i=1}^{k} M_{i} 2^{-i}
$$

- $E \in \mathbb{Z}$ represents the exponent of z. When ℓ bits are allocated to representing E, then $E \in\left[-\left(2^{\ell-1}-\right.\right.$ 2), $\left.2^{\ell-1}\right] \cap \mathbb{Z}$. Note that the range of E is $2^{\ell}-2$ rather than 2^{ℓ} as the remaining to numbers are used to represent special floating point values. When $E=-\left(2^{\ell-1}-2\right)$, then the floating point number is considered subnormal.

We now use the technique for arbitrarily biasing a coin in 2 expected tosses as a building block. Recall that we can represent the probability prob as prob $=\sum_{i=0}^{\infty} \frac{a_{i}}{2^{i+1}}$ for $a_{i} \in\{0,1\}$, where a_{i} is the zero-indexed i-th significant bit in the binary expansion of prob. Then let $I \sim \operatorname{Geom}(0.5)$ and observe that the random variable a_{I} is an exact Bernoulli sample with probability prob since $P\left(a_{I}=1\right)=\sum_{i=0}^{\infty} P\left(a_{i}=1 \mid I=i\right) P(I=$ $i)=\sum_{i=1}^{\infty} a_{i} \cdot \frac{1}{2^{i+1}}=$ prob. It is therefore sufficient to show that for any (k, ℓ)-bit float prob $=\sum_{i=0}^{\infty} \frac{a_{i}}{2^{i+1}}$, sample_bernoulli returns the value a_{I} with $I \sim \operatorname{Geom}(0.5)$.

First, we observe that by line 3 , if prob $=1.0$ then sample_bernoulli returns true which is correct by definition of a Bernoulli random variable. Otherwise, the variable max_coin_flips is computed to be the value $\mathrm{T}:$: EXPONENT_BIAS $+\mathrm{T}:$:MANTISSA_BITS which equals $2^{\ell-1}-1+k$ for any (k, ℓ)-bit float. Since prob has finite precision, there is some j for which $a_{i}=0$ for all $i>j$. For all (k, ℓ)-bit floating-point numbers, $j \leq 2^{\ell-1}-1+k$ by definition. Then sample_bernoulli calls sample_geometric_buffer with a buffer of length $\left\lceil\frac{\text { max_coin_flips }}{8}\right\rceil$ bytes (as shown in lines 8 and 11) which returns None if and only if $I>8 \cdot\left\lceil\frac{2^{\ell-1}-1+k}{8}\right\rceil$, where $I \sim \operatorname{Geom}(0.5)$ (by Theorem 2.1). In this case, since $I>j$ this index appears in the trailing_zeroes part of the binary expansion of prob and should always return false, i.e., $a_{I}=0$ for all $I>j$. We can therefore restrict our attention to when sample_geometric_buffer returns an index $I \leq$ max_coin_flips and show that sample_bernoulli always returns a_{I}.

Assuming that sample_geometric_buffer returns some $I<j$, sample_bernoulli computes the number of leading zeroes in the binary expansion of prob to be leading_zeroes $=\mathrm{T}::$: EXPONENT_BIAS $-1-$ raw_exponent (prob), where raw_exponent (prob) is the value stored in the ℓ bits of the exponent. This value is correct by the specification of a (k, ℓ)-bit float. sample_bernoulli then matches on the value
first_heads_index corresponding to $I \sim \operatorname{Geom}(0.5)$ returned by the function sample_geometric_buffer:
Case 1 (first_heads_index < leading_zeroes).
This corresponds to sample_geometric_buffer returning a value I such that a_{I} indexes into the leading_zeroes part of the prob variable's binary expansion. Therefore, for any $I<$ leading_zeroes, it follows that $a_{I}=0$ and we should return false. In this case, sample_bernoulli returns false.

Case 2 (first_heads_index == leading_zeroes).
This corresponds to sample_geometric_buffer returning a value I such that a_{I} indexes into the implicit_bit part of the prob variable's binary expansion. When prob is a normal floating point value, i.e., $E \neq-\left(2^{\ell-1}-2\right)$ then the implicit bit $a_{I}=1$. Otherwise, when prob is a subnormal floating point value, i.e., $E=-\left(2^{\ell-1}-2\right)$, the implicit bit $a_{I}=0$. Since raw_exponent (prob) corresponds to the exponent E for any (k, ℓ)-bit floating point number prob, sample_bernoulli returns true when raw_exponent (prob) $\neq 0$ and false otherwise.

Case 3 (leading_zeroes+T: :MANTISSA_BITS $<I$). This corresponds to the case where sample_geometric_buffer returns a value I where $I>j$, but $I<$ max_coin_flips and therefore a_{I} indexes into the trailing zeroes. In this case, sample_bernoulli returns false since $a_{I}=0$ for all bits in the trailing_zeroes part of prob's binary expansion.

Case 4 (leading_zeroes < first_heads_index < leading_zeroes + T: :MANTISSA_BITS).
This corresponds to sample_geometric_buffer returning a value I such that a_{I} indexes into the mantissa part of the prob variable's binary expansion. In this case, sample_bernoulli left-shifts the value 1 by (MANTISSA_BITS + leading_zeroes - first_heads_index) digits, the index into the mantissa corresponding to the digit a_{I} in the binary representation of prob. Since the operation between the left-shifted 1 and the binary representation of prob at that position is a bitwise AND, if the bit in question is 1 (matching the left-shifted 1), sample_bernoulli will return true. Otherwise, sample_bernoulli will return false.

Therefore, for any value of prob, the function sample_bernoulli either raises an exception or returns the value true with probability exactly prob.

2 impl for Rational Probability

This corresponds to impl SampleBernoulli<Rational> for bool in Rust.

2.1 Hoare Triple

Preconditions

- User-specified types:
- Variable prob must be of type Rational
- Variable constant_time must be of type bool

Pseudocode

```
# returns a single bit with some probability of success
def sample_bernoulli(prob: Rational, constant_time : bool) -> bool:
    if constant_time:
        raise NotImplementedError("constant-time uniform sampling of rationals is not
    implemented")
    let (numer, denom) = prob.into_numer_denom();
    return numer > Integer.sample_uniform_int_below(denom)
```


Postcondition

The postcondition is supplied by 0.1 .

2.2 Proof

This proof has not been written.

[^0]: ${ }^{1}$ See new changes with git diff f5bb719..a4aa05b rust/src/traits/samplers/bernoulli/mod.rs

