
trait SampleBernoulli

Vicki Xu, Hanwen Zhang, Zachary Ratliff

March 13, 2024

This proof resides in “contrib” because it has not completed the vetting process.

Warning 1 (Code is not constant-time). sample_bernoulli takes in a boolean constant_time
parameter to protect against timing attacks on the Bernoulli sampling procedure. However, the
current implementation does not guard against other types of timing side-channels that can break
differential privacy, e.g., non-constant time code execution due to branching.

PR History
• Pull Request #473

This document proves that the implementations of SampleBernoulli in mod.rs at commit f5bb719
(outdated1) satisfy the definition of the SampleBernoulli trait.

Definition 0.1. The SampleBernoulli<T> trait defines a function sample_bernoulli, where the data type
of the probability is T.

For any setting of the input parameters prob of type T restricted to [0, 1], and constant_time of type
bool, sample_bernoulli either

• raises an exception if there is a lack of system entropy or constant_time is not supported,

• returns out where out is ⊤ with probability prob, otherwise ⊥.

If constant_time is set, the implementation’s runtime is constant.

There are two impl’s (implementations): one for float probabilities, and one for rational probabilities.
To prove correctness of each impl, we prove correctness of the implementation of sample_bernoulli.

Contents
1 impl for Float Probability 2

1.1 Hoare Triple . 2
1.2 Proof . 3

2 impl for Rational Probability 4
2.1 Hoare Triple . 4
2.2 Proof . 5

1See new changes with git diff f5bb719..a4aa05b rust/src/traits/samplers/bernoulli/mod.rs

1

https://github.com/opendp/opendp/pull/473
https://docs.rs/opendp/0.9.2-nightly.20240227.1/opendp/traits/samplers/bernoulli/trait.SampleBernoulli.html
https://github.com/opendp/opendp/blob/f5bb719/rust/src/traits/samplers/bernoulli/mod.rs

1 impl for Float Probability
This corresponds to impl<T> SampleBernoulli<T> for bool where T: Float in Rust. At a high level,
sample_bernoulli considers the binary expansion of prob into an infinite sequence a_i, like so: prob =∑∞

i=0
ai

2i+1 . The algorithm samples I ∼ Geom(0.5) using an internal function sample_geometric_buffer,
then returns aI .

1.1 Hoare Triple
Preconditions

• User-specified types:

– Variable prob must be of type T
– Variable constant_time must be of type bool
– Type T has trait Float. Float implies there exists an associated type T::Bits (defined in

FloatBits) that captures the underlying bit representation of T.
– Type T::Bits has traits PartialOrd and ExactIntCast<usize>
– Type usize has trait ExactIntCast<T::Bits>

Pseudocode

1 # returns a single bit with some probability of success
2 def sample_bernoulli(prob : T, constant_time : bool) -> bool:
3 if prob == 1:
4 return True
5

6 # prepare for sampling first heads index by coin flipping
7 max_coin_flips = usize.exact_int_cast(T:: EXPONENT_BIAS) + \
8 usize.exact_int_cast(T:: MANTISSA_BITS)
9

10 # find number of bits to sample , rounding up to nearest byte (smallest sample size)
11 buffer_len = max_count_flips.inf_div (8)
12

13 # repeatedly flip fair coin and identify 0-based index of first heads
14 first_heads_index = sample_geometric_buffer(buffer_len , constant_time)
15

16 # if no events occurred , return early
17 if first_heads_index is None:
18 return False
19

20 # find number of zeroes in binary rep. of prob
21 leading_zeroes = T:: EXPONENT_BIAS - 1 - prob.raw_exponent ()
22

23 # case 1: index into the leading zeroes
24 if first_heads_index < leading_zeros:
25 return False
26

27 # case 2: index into implicit bit directly to left of mantissa
28 if first_heads_index == leading_zeroes:
29 return prob.raw_exponent () != 0
30

31 # case 3: index into out -of-bounds/implicitly -zero bits
32 if first_heads_index > leading_zeroes + MANTISSA_BITS:
33 return False
34

35 # case 4: index into mantissa
36 mask = (1 << (T:: MANTISSA_BITS + leading_zeroes - first_heads_index))
37 return (prob.to_bits () & mask) != 0

2

https://docs.rs/opendp/0.9.2-nightly.20240227.1/opendp/traits/samplers/geometric/fn.sample_geometric_buffer.html
https://docs.rs/opendp/0.9.2-nightly.20240227.1/opendp/traits/trait.Float.html
https://docs.rs/opendp/0.9.2-nightly.20240227.1/opendp/traits/trait.FloatBits.html

Postcondition

The postcondition is supplied by 0.1.

1.2 Proof
Proof. To show the correctness of sample_bernoulli we observe first that the base-2 representation of prob
is of the form

leading_zeroes || implicit_bit || mantissa || trailing_zeroes

and is represented exactly as a normal floating-point number. The IEEE-754 standard represents a normal
floating-point number using an exponent E, and a mantissa m, using a base-2 analog of scientific notation.

Definition 1.1 (Floating-Point Number). A (k, ℓ)-bit floating-point number z is represented as

z = (−1)s · (B.M) · (2E)

where

• s is used to represent the sign of z

• B is the implicit bit; 1 for normal floating-point numbers and 0 for subnormal floating point numbers

• M ∈ {0, 1}k is a k-bit string representing the part of the mantissa to the right of the radix point, i.e.,

1.M =

k∑
i=1

Mi2
−i

• E ∈ Z represents the exponent of z. When ℓ bits are allocated to representing E, then E ∈ [−(2ℓ−1 −
2), 2ℓ−1] ∩ Z. Note that the range of E is 2ℓ − 2 rather than 2ℓ as the remaining to numbers are used
to represent special floating point values. When E = −(2ℓ−1 − 2), then the floating point number is
considered subnormal.

We now use the technique for arbitrarily biasing a coin in 2 expected tosses as a building block. Recall
that we can represent the probability prob as prob =

∑∞
i=0

ai

2i+1 for ai ∈ {0, 1}, where ai is the zero-indexed
i-th significant bit in the binary expansion of prob. Then let I ∼ Geom(0.5) and observe that the random
variable aI is an exact Bernoulli sample with probability prob since P (aI = 1) =

∑∞
i=0 P (ai = 1|I = i)P (I =

i) =
∑∞

i=1 ai ·
1

2i+1 = prob. It is therefore sufficient to show that for any (k, ℓ)-bit float prob =
∑∞

i=0
ai

2i+1 ,
sample_bernoulli returns the value aI with I ∼ Geom(0.5).

First, we observe that by line 3, if prob = 1.0 then sample_bernoulli returns true which is correct by
definition of a Bernoulli random variable. Otherwise, the variable max_coin_flips is computed to be the
value T::EXPONENT_BIAS+ T::MANTISSA_BITS which equals 2ℓ−1 − 1+ k for any (k, ℓ)-bit float. Since prob
has finite precision, there is some j for which ai = 0 for all i > j. For all (k, ℓ)-bit floating-point numbers,
j ≤ 2ℓ−1 − 1 + k by definition. Then sample_bernoulli calls sample_geometric_buffer with a buffer of
length ⌈ max_coin_flips8 ⌉ bytes (as shown in lines 8 and 11) which returns None if and only if I > 8 · ⌈ 2ℓ−1−1+k

8 ⌉,
where I ∼ Geom(0.5) (by Theorem 2.1). In this case, since I > j this index appears in the trailing_zeroes
part of the binary expansion of prob and should always return false, i.e., aI = 0 for all I > j. We can
therefore restrict our attention to when sample_geometric_buffer returns an index I ≤ max_coin_flips
and show that sample_bernoulli always returns aI .

Assuming that sample_geometric_buffer returns some I < j, sample_bernoulli computes the num-
ber of leading zeroes in the binary expansion of prob to be leading_zeroes = T::EXPONENT_BIAS − 1 −
raw_exponent(prob), where raw_exponent(prob) is the value stored in the ℓ bits of the exponent. This
value is correct by the specification of a (k, ℓ)-bit float. sample_bernoulli then matches on the value

3

https://en.wikipedia.org/wiki/IEEE_754
https://web.archive.org/web/20160418185834/https://amakelov.wordpress.com/2013/10/10/arbitrarily-biasing-a-coin-in-2-expected-tosses/

first_heads_index corresponding to I ∼ Geom(0.5) returned by the function sample_geometric_buffer:

Case 1 (first_heads_index < leading_zeroes).
This corresponds to sample_geometric_buffer returning a value I such that aI indexes into the leading_zeroes
part of the prob variable’s binary expansion. Therefore, for any I < leading_zeroes, it follows that aI = 0
and we should return false. In this case, sample_bernoulli returns false.

Case 2 (first_heads_index == leading_zeroes).
This corresponds to sample_geometric_buffer returning a value I such that aI indexes into the implicit_bit
part of the prob variable’s binary expansion. When prob is a normal floating point value, i.e., E ̸= −(2ℓ−1−2)
then the implicit bit aI = 1. Otherwise, when prob is a subnormal floating point value, i.e., E = −(2ℓ−1−2),
the implicit bit aI = 0. Since raw_exponent(prob) corresponds to the exponent E for any (k, ℓ)-bit floating
point number prob, sample_bernoulli returns true when raw_exponent(prob) ̸= 0 and false otherwise.

Case 3 (leading_zeroes+T::MANTISSA_BITS < I). This corresponds to the case where sample_geometric_buffer
returns a value I where I > j, but I < max_coin_flips and therefore aI indexes into the trailing zeroes. In
this case, sample_bernoulli returns false since aI = 0 for all bits in the trailing_zeroes part of prob’s
binary expansion.

Case 4 (leading_zeroes < first_heads_index < leading_zeroes+ T::MANTISSA_BITS).
This corresponds to sample_geometric_buffer returning a value I such that aI indexes into the mantissa
part of the prob variable’s binary expansion. In this case, sample_bernoulli left-shifts the value 1
by (MANTISSA_BITS + leading_zeroes - first_heads_index) digits, the index into the mantissa cor-
responding to the digit aI in the binary representation of prob. Since the operation between the left-shifted
1 and the binary representation of prob at that position is a bitwise AND, if the bit in question is 1 (match-
ing the left-shifted 1), sample_bernoulli will return true. Otherwise, sample_bernoulli will return false.

Therefore, for any value of prob, the function sample_bernoulli either raises an exception or returns the
value true with probability exactly prob.

2 impl for Rational Probability
This corresponds to impl SampleBernoulli<Rational> for bool in Rust.

2.1 Hoare Triple
Preconditions

• User-specified types:

– Variable prob must be of type Rational

– Variable constant_time must be of type bool

Pseudocode

1 # returns a single bit with some probability of success
2 def sample_bernoulli(prob: Rational , constant_time : bool) -> bool:
3 if constant_time:
4 raise NotImplementedError("constant -time uniform sampling of rationals is not

implemented")
5

6 let (numer , denom) = prob.into_numer_denom ();
7 return numer > Integer.sample_uniform_int_below(denom)

4

Postcondition

The postcondition is supplied by 0.1.

2.2 Proof
This proof has not been written.

5

	impl for Float Probability
	Hoare Triple
	Proof

	impl for Rational Probability
	Hoare Triple
	Proof

