
trait SampleUniformIntBelow

Michael Shoemate

April 17, 2024

This proof resides in “contrib” because it has not completed the vetting process.

PR History
• Pull Request #473

This document proves that the implementations of SampleUniformIntBelow in mod.rs at commit f5bb719
(outdated1) satisfy the definition of the SampleUniformIntBelow trait.

Definition 0.1. The SampleUniformIntBelow trait defines a function sample_uniform_int_below.
For any setting of the input parameter upper, sample_uniform_int_below either

• raises an exception if there is a lack of system entropy,

• returns out where out is uniformly distributed between [0, upper).

If trials is specified, the function will attempt to sample uniformly at random trials times, and will
raise an exception if it fails to do so. If trials is not specified, the function will attempt to sample uniformly
at random indefinitely. Setting trials causes the function to run in constant time.

There are two impl’s (implementations): one for unsigned integers, and one for big integers. To prove
correctness of each impl, we prove correctness of the implementation of sample_uniform_int_below.

Contents
1 impl for Unsigned Integers 1

1.1 Hoare Triple . 2
1.2 Proof . 2

2 impl for Big Integers 2
2.1 Hoare Triple . 3
2.2 Proof . 3

1 impl for Unsigned Integers
This corresponds to impl SampleUniformIntBelow for $ty in Rust. sample_uniform_int_below uses
rejection sampling. In each round all bits of the integer are filled randomly, drawing an unsigned integer
uniformly at random. The algorithm returns the sample, modulo the upper bound, so long as the sample is
not one of the final "div" largest integers.

1See new changes with git diff f5bb719..5bb608a rust/src/traits/samplers/uniform/mod.rs

1

https://github.com/opendp/opendp/pull/473
https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/traits/samplers/uniform/trait.SampleUniformIntBelow.html
https://github.com/opendp/opendp/blob/f5bb719/rust/src/traits/samplers/uniform/mod.rs

1.1 Hoare Triple
Preconditions

• User-specified types:

– Variable upper must be of type T

– Variable trials is optional of type int, and is non-negative

– Type T is the type the trait is implemented for (one of u8, u16, u32, u64, u128, usize)

Pseudocode

1 # returns a single bit with some probability of success
2 def sample_uniform_int_below(upper: int , trials: Optional[int]) -> int:
3 found = None
4 threshold = T.MAX - T.MAX % upper
5

6 while True:
7 if trials == 0:
8 if found is None:
9 raise ValueError("failed to sample")

10 return found
11 trials = None if trials is None else trials - 1
12

13 sample = T.sample_uniform_int ()
14 if sample < threshold and found is None:
15 found = sample % upper
16

17 if found is not None and trials is None:
18 return found

Postcondition

The postcondition is supplied by 0.1.

1.2 Proof
Proof. Assuming that T.sample_uniform_int() is correctly implemented, then v is a sample between zero
and T.MAX inclusive, the greatest representable number of type T.

You could sample one of upper values uniformly at random by rejecting v if it is larger than upper. That
is, only return v if v is less than upper.

It is equivalent to extend the acceptance region, by returning v % 2 if v is less than upper * 2, so long
as upper * 2 <= T.MAX. This reduces the rejection rate, which increases algorithm performance.

There are T.MAX % upper remaining elements if you were to extend the acceptance region to the greatest
multiple of upper that is less than T.MAX. Therefore conditioning v on being less than T.MAX - T.MAX %
upper results in v % upper being an unbiased, uniformly distributed sample.

When trials is specified, the algorithm will attempt to sample uniformly at random trials times, and
will raise an exception if it fails to do so. Only the first successful sample is kept.
Therefore, for any value of upper, the function satisfies the postcondition.

2 impl for Big Integers
This corresponds to impl SampleUniformIntBelow for UBig in Rust. This algorithm uses the same algo-
rithm and argument as used for unsigned native integers, but this time the bit depth is dynamically chosen
to fill the last byte of a series of bytes long enough to hold upper.

2

2.1 Hoare Triple
Preconditions

• User-specified types:

– Variable upper must be of type UBig

– Variable trials is optional of type int, and is non-negative

Pseudocode

1 # returns a single bit with some probability of success
2 def sample_uniform_int_below(upper: int , trials: Optional[int]) -> int:
3 byte_len = div_ceil(upper.bit_len (), 8)
4 max = Ubig.from_be_bytes ([u8.MAX] * byte_len)
5 threshold = max - max % upper
6

7 found = None
8 buffer = [0] * byte_len
9 while True:

10 if trials == 0:
11 if found is None:
12 raise ValueError("failed to sample")
13 return found
14 trials = None if trials is None else trials - 1
15

16 fill_bytes(buffer)
17

18 sample = UBig.from_be_bytes(buffer)
19 if sample < threshold and found is None:
20 found = sample % upper
21

22 if found is not None and trials is None:
23 return found

Postcondition

The postcondition is supplied by 0.1.

2.2 Proof
Proof. byte_len is the fewest number of bytes necessary to represent upper, which is ceil(ceil(log2(upper))/8).

This proof follows the same logic as in 1.2, but the constants are generalized. max is the largest repre-
sentable number in byte_len bytes, corresponding to T.MAX. v is an integer sampled uniformly below max by
randomly filling bits with bernoulli samples. The algorithm terminates when v is below the same threshold.

When trials is specified, the algorithm will attempt to sample uniformly at random trials times, and
will raise an exception if it fails to do so. Only the first successful sample is kept.
Therefore, for any value of upper, the function satisfies the postcondition.

3

	impl for Unsigned Integers
	Hoare Triple
	Proof

	impl for Big Integers
	Hoare Triple
	Proof

