
fn make_count

Sílvia Casacuberta, Grace Tian, Connor Wagaman

This proof resides in “contrib” because it has not completed the vetting process.

Proves soundness of make_count in mod.rs at commit f5bb719 (outdated1).
make_count returns a Transformation that computes a count of the number of records in a vector. The

length of the vector, of type usize, is exactly casted to a user specified output type TO. If the length is too
large to be represented exactly by TO, the cast saturates at the maximum value of type TO.

Vetting History
• Pull Request #513

1 Hoare Triple

Precondition
• TIA (atomic input type) is a type with trait Primitive. Primitive implies TIA has the trait bound:

– CheckNull so that TIA is a valid atomic type for AtomDomain

• TO (output type) is a type with trait Number. Number further implies TO has the trait bounds:

– InfSub so that the output domain is compatible with the output metric

– CheckNull so that TO is a valid atomic type for AtomDomain

– ExactIntCast for casting a vector length index of type usize to TO. ExactIntCast further implies
TO has the trait bound:

∗ ExactIntBounds, which gives the MAX_CONSECUTIVE value of type TO

– One provides a way to retrieve TO’s representation of 1

– DistanceConstant to satisfy the preconditions of new_stability_map_from_constant

Pseudocode

1 def make_count ():
2 input_domain = VectorDomain(AtomDomain(TIA))
3 output_domain = AtomDomain(TO)
4

5 def function(data: Vec[TIA]) -> TO:
6 size = input_domain.size(data)
7 try:
8 return TO.exact_int_cast(size)
9 except FailedCast:

10 return TO.MAX_CONSECUTIVE

1See new changes with git diff f5bb719..5bb608a rust/src/transformations/count/mod.rs

1

https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/transformations/fn.make_count.html
https://github.com/opendp/opendp/blob/f5bb719/rust/src/transformations/count/mod.rs
https://github.com/opendp/opendp/pull/513
https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/traits/trait.Primitive.html
https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/traits/trait.CheckNull.html
https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/domains/struct.AtomDomain.html
https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/traits/trait.Number.html
https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/traits/trait.InfSub.html
https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/traits/trait.ExactIntCast.html
https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/traits/trait.ExactIntBounds.html
https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/traits/trait.DistanceConstant.html

11

12 input_metric = SymmetricDistance ()
13 output_metric = AbsoluteDistance(TO)
14

15 stability_map = new_stability_map_from_constant(TO.one())
16

17 return Transformation(
18 input_domain , output_domain , function ,
19 input_metric , output_metric , stability_map)

Postcondition
For every setting of the input parameters (TIA, TO) to make_count such that the given preconditions hold,
make_count raises an exception (at compile time or run time) or returns a valid transformation. A valid
transformation has the following properties:

1. (Appropriate output domain). For every element v in input_domain, function(v) is in output_domain
or raises a data-independent runtime exception.

2. (Stability guarantee). For every pair of elements u, v in input_domain and for every pair (d_in, d_out),
where d_in has the associated type for input_metric and d_out has the associated type for
output_metric, if u, v are d_in-close under input_metric, stability_map(d_in) does not raise an
exception, and stability_map(d_in) ≤ d_out, then function(u), function(v) are d_out-close under
output_metric.

2 Proofs
Proof. (Part 1 – appropriate output domain). The output_domain is AtomDomain(TO), so it is sufficient
to show that function always returns non-null values of type TO. By the definition of the ExactIntCast
trait, TO.exact_int_cast always returns a non-null value of type TO or raises an exception. If an exception
is raised, the function returns TO.MAXIMUM_CONSECUTIVE, which is also a non-null value of type TO. Thus, in
all cases, the function (from line 7) returns a non-null value of type TO.

Before proceeding with proving the validity of the stability map, we provide a couple lemmas.

Lemma 2.1. |function(u)− function(v)| ≤ |len(u)− len(v)|, where len is an alias for
input_domain.size.

Proof. By CollectionDomain, we know size on line 6 is of type usize, so it is non-negative and inte-
gral. Therefore, by the definition of ExactIntCast, the invocation of TO.exact_int_cast on line 8 can
only fail if the argument is greater than TO.MAX_CONSECUTIVE. In this case, the value is replaced with
TO.MAX_CONSECUTIVE. Therefore, function(u) = min(len(u), c), where c = TO.MAX_CONSECUTIVE. We use
this equality to prove the lemma:

|function(u)− function(v)| = |min(len(u), c)−min(len(v), c)|
≤ |len(u)− len(v)| since clamping is stable

Lemma 2.2. For vector v with each element ℓ ∈ v drawn from domain X , len(v) =
∑

z∈X hv(z).

2

https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/domains/trait.CollectionDomain.html

Proof. Every element ℓ ∈ v is drawn from domain X , so summing over all z ∈ X will sum over every
element ℓ ∈ x. Recall that the definition of SymmetricDistance states that hv(z) will return the number of
occurrences of value z in vector v. Therefore,

∑
z∈X hv(z) is the sum of the number of occurrences of each

unique value; this is equivalent to the total number of items in the vector.
Since CollectionDomain is implemented for VectorDomain<AtomDomain<TIA», we depend on the cor-

rectness of the implementation Conditioned on the correctness of the implementation of CollectionDomain
for VectorDomain<AtomDomain<TIA», the variable size is of type usize containing the number of elements
in arg. Therefore,

∑
z∈X hv(z) is equivalent to size.

Proof. (Part 2 – stability map). Take any two elements u, v in the
input_domain and any pair (d_in, d_out), where d_in has the associated type for input_metric and d_out
has the associated type for output_metric. Assume u, v are d_in-close under input_metric and that
stability_map(d_in) ≤ d_out. These assumptions are used to establish the following inequality:

|function(u)− function(v)| ≤ |len(u)− len(v)| by 2.1

= |
∑
z∈X

hu(z)−
∑
z∈X

hv(z)| by 2.2

= |
∑
z∈X

(hu(z)− hv(z)) | by algebra

≤
∑
z∈X

|hu(z)− hv(z)| by triangle inequality

= dSym(u, v) by SymmetricDistance

≤ d_in by the first assumption
≤ TO.inf_cast(d_in) by InfCast

≤ TO.one().inf_mul(TO.inf_cast(d_in)) by InfMul

= stability_map(d_in) by pseudocode line 15

≤ d_out by the second assumption

It is shown that function(u), function(v) are d_out-close under output_metric.

3

https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/domains/trait.CollectionDomain.html
https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/metrics/struct.SymmetricDistance.html
https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/traits/trait.InfCast.html
https://docs.rs/opendp/0.9.2-nightly.20240416.1/opendp/traits/trait.InfMul.html

	Hoare Triple
	Proofs

