
fn make_clamp

Sílvia Casacuberta

This proof resides in “contrib” because it has not completed the vetting process.

Proves soundness of fn make_clamp in mod.rs at commit 0db9c6036 (outdated1).

Vetting History
• Pull Request #512

1 Hoare Triple

Precondition
To ensure the correctness of the output, we require the following preconditions:

• Type TA must have trait ProductOrd.

• Type M must have trait DatasetMetric.

Pseudocode

1 def make_clamp(
2 input_domain: VectorDomain[AtomDomain[TA]],
3 input_metric: M,
4 bounds: (TA , TA)
5 ):
6 input_domain.element_domain.assert_non_null ()
7

8 # clone to make it explicit that we are not mutating the input domain
9 output_row_domain = input_domain.element_domain.clone ()

10 output_row_domain.bounds = Bounds.new_closed(bounds)
11

12 def clamper(value: TA) -> TA:
13 return value.total_clamp(bounds [0], bounds [1])
14

15 return make_row_by_row_fallible(
16 input_domain ,
17 input_metric ,
18 output_row_domain ,
19 clamper
20 )

1See new changes with git diff 0db9c6036..95829e1 rust/src/transformations/clamp/mod.rs

1

https://github.com/opendp/opendp/blob/0db9c6036/rust/src/transformations/clamp/mod.rs
https://github.com/opendp/opendp/pull/512


Postconditions

For every setting of the input parameters (input_domain, input_metric, bounds) to make_clamp such
that the given preconditions hold, make_clamp raises an exception (at compile time or run time) or returns
a valid transformation. A valid transformation has the following properties:

1. (Appropriate output domain). For every element x in input_domain, function(x) is in output_domain
or raises a data-independent runtime exception.

2. (Stability guarantee). For every pair of elements x, x′ in input_domain and for every pair (d_in, d_out),
where d_in has the associated type for input_metric and d_out has the associated type for
output_metric, if x, x′ are d_in-close under input_metric, stability_map(d_in) does not raise an
exception, and stability_map(d_in) ≤ d_out, then function(x), function(x′) are d_out-close under
output_metric.

2 Proof
Lemma 2.1. The invocation of make_row_by_row_fallible (line 15) satisfies its preconditions.

Proof. The preconditions of make_clamp and pseudocode definition (line 5) ensure that the type precondi-
tions of make_row_by_row_fallible are satisfied. The remaining preconditions of make_row_by_row_fallible
are:

• row_function has no side-effects.

• If the input to row_function is a member of input_domain’s row domain, then the output is a member
of output_row_domain.

The first precondition is satisfied by the definition of clamper (line 12) in the pseudocode.
For the second precondition, assume the input is a member of input_domain’s row domain. Therefore,

by 6, the input is non-null. In addition, since Bounds.new_closed did not raise an exception, then by the
definition of Bounds.new_closed, the bounds are non-null. Thus, by the definition of ProductOrd, the
preconditions of total_clamp are satisfied, so the output is within the bounds. Therefore, the output is a
member of output_row_domain.

We now prove the postcondition of make_clamp.

Proof. By 2, the preconditions of make_row_by_row_fallible are satisfied. Thus, by the definition of
make_row_by_row_fallible, the output is a valid transformation.

2

https://docs.rs/opendp/0.11.0/opendp/transformations/manipulation/fn.make_row_by_row_fallible.html
https://docs.rs/opendp/0.11.0/opendp/traits/trait.ProductOrd.html
https://docs.rs/opendp/0.11.0/opendp/transformations/manipulation/fn.make_row_by_row_fallible.html

	Hoare Triple
	Proof

