
fn make_quantile_score_candidates

Michael Shoemate Christian Covington Ira Globus-Harrus

August 19, 2024

This proof resides in “contrib” because it has not completed the vetting process.

Proves soundness of make_quantile_score_candidates in mod.rs at commit f5bb719 (outdated1).
make_quantile_score_candidates returns a Transformation that takes a numeric vector database and
a vector of numeric quantile candidates, and returns a vector of scores, where higher scores correspond to
more accurate candidates.

Vetting History
• Pull Request #456

1 Intuition
The quantile score function scores each c in a set of candidates C.

si = −|(1− α) ·#(x < Ci)− α ·#(x > Ci)| (1)

Where #(x < Ci) = |{x ∈ x|x < Ci}| is the number of values in x less than Ci, and similarly for other
variations of inequalities. The scalar score function can be equivalently stated:

si = −|(1− α) ·#(x < c)− α ·#(x > c)| (2)
= −|(1− α) ·#(x < c)− α · (|x| −#(x < c)−#(x = c))| (3)
= −|#(x < c)− α · (|x| −#(x = c))| (4)

It has an intuitive interpretation as −|candidate_rank − ideal_rank|, where the absolute distance be-
tween the candidate and ideal rank penalizes the score. The ideal rank does not include values in the dataset
equal to the candidate. This scoring function considers higher scores better, and the score is maximized at
zero when the candidate rank is equivalent to the rank at the ideal α-quantile.

The scalar scorer is almost equivalent to Smith’s[1], but adjusts for a source of bias when there are values
in the dataset equal to the candidate. For comparison, we can equivalently write the OpenDP scorer as if
there were some α-discount on dataset entries equal to the candidate.

OpenDP −|#(x < c) + α ·#(x = c)− α · |x||
Smith −|#(x < c) + 1 ·#(x = c)− α · |x||

Observing that #(x ≤ c) = #(x < c) + 1 ·#(x = c).
1See new changes with git diff f5bb719..d0515a7 rust/src/transformations/quantile_score_candidates/mod.rs

1

https://docs.rs/opendp/0.11.1/opendp/transformations/fn.make_quantile_score_candidates.html
https://github.com/opendp/opendp/blob/f5bb719/rust/src/transformations/quantile_score_candidates/mod.rs
https://github.com/opendp/opendp/pull/456

1.1 Examples
Let x = {0, 1, 2, 3, 4} and α = 0.5 (median):

score(x, 0, α) = −|0− .5 · (5− 1)| = −2

score(x, 1, α) = −|1− .5 · (5− 1)| = −1

score(x, 2, α) = −|2− .5 · (5− 1)| = −0

score(x, 3, α) = −|3− .5 · (5− 1)| = −1

score(x, 4, α) = −|4− .5 · (5− 1)| = −2

The score is maximized by the candidate at the true median.
Let x = {0, 1, 2, 3, 4, 5} and α = 0.5 (median):

score(x, 0, α) = −|0− .5 · (6− 1)| = −2.5

score(x, 1, α) = −|1− .5 · (6− 1)| = −1.5

score(x, 2, α) = −|2− .5 · (6− 1)| = −0.5

score(x, 3, α) = −|3− .5 · (6− 1)| = −0.5

score(x, 4, α) = −|4− .5 · (6− 1)| = −1.5

score(x, 5, α) = −|5− .5 · (6− 1)| = −2.5

The two candidates nearest the median are scored equally and highest.
Let x = {0, 1, 2, 3, 4} and α = 0.25 (first quartile):

score(x, 0, α) = −|0− .25 · (5− 1)| = −1

score(x, 1, α) = −|1− .25 · (5− 1)| = −0

score(x, 2, α) = −|2− .25 · (5− 1)| = −1

score(x, 3, α) = −|3− .25 · (5− 1)| = −2

score(x, 4, α) = −|4− .25 · (5− 1)| = −3

As expected, the score is maximized when c = 1.
Let x = {0, 1, 2, 3, 4, 5} and α = 0.25 (first quartile):

score(x, 0, α) = −|0− .25 · (6− 1)| = −1.25

score(x, 1, α) = −|1− .25 · (6− 1)| = −0.25

score(x, 2, α) = −|2− .25 · (6− 1)| = −0.75

score(x, 3, α) = −|3− .25 · (6− 1)| = −1.75

score(x, 4, α) = −|4− .25 · (6− 1)| = −2.75

score(x, 5, α) = −|5− .25 · (6− 1)| = −3.75

The ideal rank is 1.25. The nearest candidate, 1, has the greatest score, followed by 2, and then 0.

2 Finite Data Types
The previous equation assumes the existence of real numbers to represent α. We instead assume α is rational,
such that α = αnum

αden
. Multiply the equation through by αden to get the following, which only uses integers:

2

score(x, c, αnum, αden) = −|αden ·#(x < c)− αnum · (|x| −#(x = c))| (5)

This adjustment also increases the sensitivity by a factor αden, but does not affect the utility. We now
make the scoring strictly non-negative.

• Drop the negation and instead configure the exponential mechanism to minimize the score.

• Compute the absolute difference in a function that swaps the order of arguments to keep the sign
positive.

score(x, c, αnum, αden) = abs_diff(αden ·#(x < c), αnum · (|x| −#(x = c))) (6)

To prevent a numerical overflow when computing the arguments to abs_diff, first choose a data type
that the scores are to be represented in. If the number of records is greater than can be represented in this
data type, then sample the dataset down to at most this number of records. Notice that when any given
record is added or removed, the counts differ by no more than they would have without this sampling down.
In the OpenDP implementation, the dataset size may be no greater than the max value of a Rust usize,
because each index into the dataset maps to a distinct computer memory address.

Now allocate some of the bits of the data type for the alpha denominator, and use the remaining bits for
counts of up to l, where l is the effective dataset size. From this set-up, we choose an αden such that αden · l
is representable. Since αnum ≤ αden, αnum · l is representable. Since the dataset size fits in the choice of
data type, then |x| is representable. Therefore, no quantity in the following equation is not representable.

score(x, c, αnum, αden, l) = abs_diff(αden ·min(#(x < c), l), αnum ·min(|x| −#(x = c), l)) (7)

Should we compute counts with a 64-bit integer, we might choose αden to be 10,000. This would allow
for a fine fractional approximation of alpha, while still leaving enough room for datasets on the order of 1015
elements.

3 Hoare Triple

Precondition
• TIA (input atom type) is a type with trait Number.

• A (alpha type) is a type with trait Float.

• MI is a type with trait ARDatasetMetric.

Function

1 def make_quantile_score_candidates(
2 input_domain: VectorDomain[AtomDomain[TIA]],
3 input_metric: MI,
4 candidates: list[TIA],
5 alpha: A
6) -> Transformation:
7

8 input_domain.element_domain.assert_non_null ()
9

10 for i in range(len(candidates) - 1):
11 assert candidates[i] < candidates[i + 1]
12

13 alpha_numer , alpha_denom = alpha.into_frac(size=None)
14 if alpha_numer > alpha_denom or alpha_denom == 0:

3

https://docs.rs/opendp/0.11.1/opendp/traits/trait.Number.html
https://docs.rs/opendp/0.11.1/opendp/traits/trait.Float.html
https://docs.rs/opendp/0.11.1/opendp/transformations/trait.ARDatasetMetric.html

15 raise ValueError("alpha must be within [0, 1]")
16

17 if input_domain.size is not None:
18 # to ensure that the function will not overflow
19 input_domain.size.inf_mul(alpha_denom)
20 size_limit = input_domain.size
21 else:
22 size_limit = (usize.MAX).neg_inf_div(alpha_den)
23

24 def function(arg: list[TIA]) -> list[usize]:
25 return compute_score(arg , candidates , alpha_numer , alpha_denom , size_limit)
26

27 if input_domain.size is not None:
28 def stability_map(d_in: u32) -> usize:
29 return TOA.inf_cast(d_in // 2).inf_mul (2).inf_mul(alpha_denom)
30 else:
31 abs_dist_const: usize = max(alpha_numer , alpha_denom.inf_sub(alpha_numer))
32 stability_map = new_stability_map_from_constant(abs_dist_const , QO=usize)
33

34 return Transformation(
35 input_domain=input_domain ,
36 output_domain=VectorDomain(
37 element_domain=AtomDomain(T=usize),
38 size=len(candidates)),
39 function=function ,
40 input_metric=input_metric ,
41 output_metric=LInfDistance(Q=usize),
42 stability_map=stability_map ,
43)

Postcondition
Theorem 3.1. For every setting of the input parameters (input_domain, input_metric, candidates,
alpha, TIA, A, MI) to make_quantile_ score_candidates such that the given preconditions hold, make_quantile_
score_candidates raises an exception (at compile time or run time) or returns a valid transformation. A
valid transformation has the following properties:

1. (Appropriate output domain). For every element x in input_domain, function(x) is in output_domain
or raises a data-independent runtime exception.

2. (Stability guarantee). For every pair of elements x, x′ in input_domain and for every pair (d_in, d_out),
where d_in has the associated type for input_metric and d_out has the associated type for
output_metric, if x, x′ are d_in-close under input_metric, stability_map(d_in) does not raise an
exception, and stability_map(d_in) ≤ d_out, then function(x), function(x′) are d_out-close under
output_metric.

4 Proof

4.1 Appropriate Output Domain
The raw type and domain are equivalent, save for potential nullity in the atomic type. The scalar scorer
structurally cannot emit null. Therefore the output of the function is a member of the output domain.

4.2 Stability Guarantee
The constructor first performs checks to ensure that the preconditions on compute_score are met. It checks
that vectors in the input domain do not contain null values, that the candidates are strictly increasing, that
alpha is fractional and in the range [0, 1], and computes a size_limit for which size_limit · alpha_den

4

does not overflow a usize. Thus by the definition of compute_score, for each candidate, the response from
the function is:

compute_score(x, c, αnum, αden, l) = |αden ·min(#(x < c), l), αnum ·min(|x| −#(x = c), l)| (8)

The sensitivity of this function differs depending on if the size of the input vector is known.

4.2.1 Unknown Size Stability

First, consider the case where the size is unknown.

Lemma 4.1. If dSym(x, x′) = 1, then d∞(function(x), function(x′)) ≤ max(αnum, αden − αnum).

Proof. Assume dSym(x, x′) = 1.

d∞(function(x)i, function(x′)i)

= max
i

|function(x)i − function(x′)i| by definition of d∞

= max
i

|abs_diff(αden ·min(#(x < Ci), l), αnum ·min(|x| −#(x = Ci), l)) by definition of function

abs_diff(αden ·min(#(x′ < Ci), l), αnum ·min(|x′| −#(x′ = Ci), l))|
= αden ·max

i
||min(#(x < Ci), l)− α ·min(|x| −#(x = Ci), l)|

|min(#(x′ < Ci), l)− α ·min(|x′| −#(x′ = Ci), l)||
≤ αden ·max

i
||#(x < Ci)− α · (|x| −#(x = Ci))|

|#(x′ < Ci)− α · (|x| −#(x′ = Ci))||

Consider each of the three cases of adding or removing an element in x.

Case 1. Assume x′ is equal to x, but with some xj < Ci added or removed.

= αden ·max
i

||(1− α) ·#(x < Ci)− α ·#(x > Ci)|

− |(1− α) · (#(x < Ci)± 1)− α ·#(x > Ci)||
≤ αden ·max

i
||(1− α) ·#(x < Ci)− α ·#(x > Ci)|

− (|(1− α) ·#(x < Ci)− α ·#(x > Ci)|+ | ± (1− α)|)| by triangle inequality
= αden ·max

i
|1− α| scores cancel

= αden − αnum since α ≤ 1

Case 2. Assume x′ is equal to x, but with some xj > Ci added or removed.

= αden ·max
i

||(1− α) ·#(x < Ci)− α ·#(x > Ci)|

− |(1− α) ·#(x < Ci)− α · (#(x > Ci)± 1)||
≤ αden ·max

i
||(1− α) ·#(x < Ci)− α ·#(x > Ci)|

− (|(1− α) ·#(x < Ci)− α ·#(x > Ci)|+ | ± α|)| by triangle inequality
= αden ·max

i
|α| scores cancel

= αnum since α ≥ 0

5

Case 3. Assume x′ is equal to x, but with some xj = Ci added or removed.

= αden ·max
i

||(1− α) ·#(x < Ci)− α ·#(x > Ci)|

− |(1− α) ·#(x < Ci)− α ·#(x > Ci)||
= 0 no change in score

Take the union bound over all cases.

≤ max(αnum, αden − αnum)

Take any two elements x, x′ in the input_domain and any pair (d_in, d_out), where d_in has the
associated type for input_metric and d_out has the associated type for output_metric. Assume x, x′ are
d_in-close under input_metric and that stability_map(d_in) ≤ d_out.

d_out = max
x∼x′

d∞(s, s′) where s = function(x)

= max
x∼x′

max
i

|si − s′i| by definition of LInfDistance, without monotonicity

≤
d_in∑
j

max
Zj∼Zj+1

max
i

|si,j − si,j+1| by path property dSym(Zi, Zi+1) = 1, x = Z0 and x′ = Zd_in

≤
d_in∑
j

max(αnum, αden − αnum) by 4.1

≤ d_in ·max(αnum, αden − αnum)

This formula matches the stability map in the case where the dataset size is unknown.

4.2.2 Known Size Stability

Now consider the case where the dataset size is known.

Lemma 4.2. If dCO(x, x
′) ≤ 1, then d∞(function(x), function(x′)) ≤ 2 · αden.

Proof. Assume dCO(x, x
′) ≤ 1.

d∞(function(x), function(x′))

= max
i

|function(x)i − function(x′)i| by definition of d∞

= max
i

|abs_diff(αden ·min(#(x < Ci), l), αnum ·min(|x| −#(x = Ci), l)) by def. of function

− abs_diff(αden ·min(#(x′ < Ci), l), αnum ·min(|x′| −#(x′ = Ci), l))|
= αden ·max

i
||min(#(x < Ci), l)− α ·min(|x| −#(x = Ci), l)|

− |min(#(x′ < Ci), l)− α ·min(|x′| −#(x′ = Ci), l)||
= αden ·max

i
||#(x < Ci)− α · (|x| −#(x = Ci))|

− |#(x′ < Ci)− α · (|x| −#(x′ = Ci))||

6

https://docs.rs/opendp/0.11.1/opendp/metrics/struct.LInfDistance.html

Consider each of the four cases of changing a row in x.

Case 1. Assume x′ is equal to x, but with some xj < Ci replaced with x′
j > Ci.

= 2 · αden ·max
i

||(1− α) ·#(x < Ci)− α ·#(x > Ci)|

− (1− α) · (#(x < Ci)− 1)− α · (#(x > Ci) + 1)|| by definition of function
≤ 2 · αden ·max

i
||(1− α) ·#(x < Ci)− α ·#(x > Ci)|

− (|(1− α) ·#(x < Ci)− α ·#(x > Ci)|+ |1|)| by triangle inequality
= 2 · αden ·max

i
|1| scores cancel

= 2 · αden

Case 2. Assume x′ is equal to x, but with some xj > Ci replaced with x′
j < Ci.

= 2 · αden

by symmetry, follows from Case 1.

Case 3. Assume x′ is equal to x, but with some xj ̸= Ci replaced with Ci.

≤ 2 ·max(αnum, αden − αnum)

equivalent to one removal (see make_quantile_score_candidates)

Case 4. Assume x′ is equal to x, but with some xj = Ci replaced with x′
j ̸= Ci.

≤ 2 ·max(αnum, αden − αnum)

equivalent to one addition (see make_quantile_score_candidates)

Take the union bound over all cases.

d∞(si, s
′
i) ≤ max(2 · αden, 2 ·max(αnum, αden − αnum)) = 2 · αden

since max(α, 1− α) ≤ 1

Take any two elements x, x′ in the input_domain and any pair (d_in, d_out), where d_in has the
associated type for input_metric and d_out has the associated type for output_metric. Assume x, x′ are
d_in-close under input_metric and that stability_map(d_in) ≤ d_out.

7

https://docs.rs/opendp/0.11.1/opendp/transformations/fn.make_quantile_score_candidates.html
https://docs.rs/opendp/0.11.1/opendp/transformations/fn.make_quantile_score_candidates.html

d_out = max
x∼x′

d∞(s, s′)

= max
x∼x′

max
i

|si − s′i| by definition of LInfDistance, without monotonicity

≤
d_in//2∑

j

max
Zj∼Zj+1

max
i

|si,j − si,j+1| by path property dCO(Zi, Zi+1) = 1, x = Z0 and Zd_in = x′

≤
d_in//2∑

j

2 · αden by 4.2

≤ 2 · (d_in//2) · αden

This formula matches the stability map in the case where the dataset size is known.

4.2.3 Conclusion

Take any two elements x, x′ in the input_domain and any pair (d_in, d_out), where d_in has the associated
type for input_metric and d_out has the associated type for output_metric. Assume x, x′ are d_in-close
under input_metric and that stability_map(d_in) ≤ d_out.

By 4.2.1 and 4.2.2 it is shown that function(x), function(x’) are d_out-close under output_metric for
any choice of input arguments.

References
[1] Adam Smith. Privacy-preserving statistical estimation with optimal convergence rates. In Proceedings

of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC ’11, page 813–822, New
York, NY, USA, 2011. Association for Computing Machinery.

8

https://docs.rs/opendp/0.11.1/opendp/metrics/struct.LInfDistance.html

	Intuition
	Examples

	Finite Data Types
	Hoare Triple
	Proof
	Appropriate Output Domain
	Stability Guarantee
	Unknown Size Stability
	Known Size Stability
	Conclusion

