{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# A Framework to Understand DP\n", "\n", "This resource introduces differential privacy from the perspective of the OpenDP programming framework.\n", "No prior knowledge is assumed of differential privacy (DP), but you will likely still find this resource useful if you already have a background in DP.\n", "Prior knowledge in basic probability, like random variables, will be useful.\n", "\n", "Assume we have a vector dataset $u$ where each record contains sensitive information about a different individual." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "# u is a small vector dataset with contributions from:\n", "# [Alice, Jane, John, Jack, ...]\n", "u = [12, 10, 8, 7, ]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can use differential privacy to collect measurements (statistics such as means and histograms) on this dataset, without revealing information about specific individuals.\n", "\n", "To understand DP, it is important to first understand: \n", "1. distance between datasets \n", "2. distance between distributions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Distance Between Datasets - Adjacency\n", "\n", "An adjacent dataset is any dataset that differs from our dataset by a single individual.\n", "Returning to our vector dataset example, assume our dataset $u$ has one record that contains information about a person, Alice.\n", "Then one adjacent dataset $v$ would contain every row in $u$ except for the row with Alice's information. " ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "# v is one (of many) datasets that are adjacent to u\n", "# [Jane, John, Jack, ...] (without Alice!)\n", "v = [10, 8, 7, ]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can construct other datasets adjacent to $u$ by dropping a different row or adding a new row.\n", "When one person may contribute up to $k$ rows, adjacent datasets differ by up to $k$ additions and removals. \n", "\n", "The number of additions/removals between any two datasets is equivalent to the cardinality of the symmetric difference between the multisets $u$ and $v$. We call this metric the symmetric distance.\n", "\n", "$$d_{Sym}(u, v) = |u \\triangle v|$$\n", "\n", "And in code:" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def d_Sym(u, v):\n", " \"\"\"symmetric distance between multisets u and v\"\"\"\n", " # NOT this, as sets are not multisets. Loses multiplicity:\n", " # return len(set(u).symmetric_difference(set(v)))\n", "\n", " from collections import Counter\n", " u, v = Counter(u), Counter(v)\n", " # indirectly compute symmetric difference via the union of asymmetric differences\n", " return sum(((u - v) + (v - u)).values())\n", "\n", "\n", "# compute the symmetric distance between our two example datasets:\n", "d_Sym(u, v)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$d_{Sym}(\\{12, 10, 8, 7\\}, \\{10, 8, 7\\}) = |\\{12, 10, 8, 7\\} \\triangle \\{10, 8, 7\\}| = |\\{12\\}| = 1$\n", "\n", "In practice, we never directly compute these distances.\n", "In order to apply differentially private methods, you need to establish an upper bound on the distance between adjacent datasets.\n", "Equivalently, this is an upper bound on the number of records any one individual may contribute.\n", "\n", "For instance, in the vector dataset example, it was stipulated that each element contains sensitive information about a different individual. \n", "This statement implies that the symmetric distance between adjacent datasets, where one individual is added or removed, is at most one.\n", "That is, for any choice of datasets $u$ and $v$ such that $u$ is adjacent to $v$ (denoted $u \\sim_{Sym} v$), we have that $d_{Sym}(u, v) \\leq 1$. \n", "\n", "Before moving on, there are some trivial generalizations. \n", "A dataset need not be a vector, it could be a dataframe or any other collection with a concept of records. \n", "There are also other dataset metrics aside from SymmetricDistance (used for unbounded DP), such as ChangeOneDistance (used for bounded DP). There are also variations of metrics that are sensitive to data ordering, metrics for describing distances between graphs, and more!\n", "\n", "You should now have a sense for what an adjacent dataset means, how dataset distances work, and an intuitive understanding of the symmetric distance metric." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Distance Between Distributions - Divergence\n", "You can think of a measurement $M(\\cdot)$ as a differentially private statistic.\n", "Measurements are random variables (RVs), that is, they sample from noise distributions.\n", "The outputs of a measurement are realizations of a random variable that follow a known probability distribution.\n", "Measurements only have one parameter: a dataset (for context, a Laplace RV has parameters for shift and scale).\n", "This section describes how to measure distance between the distributions of measurements on adjacent datasets.\n", "\n", "A common measurement is the Laplace DP sum, which is a sample from the Laplace distribution centered at the dataset sum with a fixed noise scale.\n", "The following plot compares the distribution of the DP sum on dataset $u$ with the distribution of the DP sum on dataset $v$, when the noise scale is fixed to 25." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEHCAYAAACEKcAKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABZu0lEQVR4nO3dd3gUVffA8e8hBUIJIaETIPTeI9J7VQREQFCKgl0URVH5Kdj7q9jhRUFAOqiAgID0KhBK6CX0TmihBlLO749Z8oYQSALZnezmfp5nH3bvzsyeMTFnZ+6954qqYhiGYRh3K4vdARiGYRjuzSQSwzAM456YRGIYhmHcE5NIDMMwjHtiEolhGIZxT7ztDsAOefPm1ZCQELvDMAzDcCvr168/rar5krZnykQSEhJCWFiY3WEYhmG4FRE5mFy7ubVlGIZh3BOTSAzDMIx7YhKJYRiGcU9MIjEMwzDuiUkkhmEYxj1xaSIRkTYisktEIkTkrWTezyoikx3vrxGREEd7SxFZLyJbHP82S7RPLUd7hIh8JyLiwlMyDMPI9FyWSETEC/gRaAtUBLqLSMUkm/UFzqlqaWAo8Lmj/TTwkKpWAXoDvyXaZxjwNFDG8WjjtJMwDMMwbuHKK5LaQISq7lPV68AkoEOSbToAYxzPpwHNRURUdaOqHnO0bwP8HFcvhQB/Vf1XrXr4Y4GOTj8TI3NQhV1z4dpFuyNxibh4Ze7WE8TExdsdiuFmXJlIigCHE70+4mhLdhtVjQWigKAk2zwCbFDVa47tj6RwTABE5BkRCRORsMjIyLs+CSMT2bcEJj4KCz+wOxKXmBp2mOfGrWf0ygN2h2K4GbfqbBeRSli3u55N676qOkJVQ1U1NF++W2b4G8bNVGGp487q+jFw4didt3dzMXHx/LA4AoD/LtvL1etxNkdkuBNXJpKjQNFEr4MdbcluIyLeQG7gjON1MPAn0EtV9ybaPjiFYxpG2u1fBodWQ91+oHGw4hu7I3KqPzcc5ci5qzzfpBSnL11n/JpkK2EYRrJcmUjWAWVEpISI+ALdgJlJtpmJ1ZkO0BlYpKoqIgHAbOAtVV15Y2NVPQ5cEJE6jtFavYAZTj4Pw9OpwpLPIFchaDYYqnWD9aPhwnG7I3OKmLh4vl+8h6rBuXmjdTnqlQpi+NJ95qrESDWXJRJHn0c/YB6wA5iiqttE5AMRae/YbCQQJCIRwADgxhDhfkBpYIiIbHI88jveewH4BYgA9gJ/u+aMDI91YDkcWgUNXgWfbNDwdYiPhZXf2h2ZU/y58SiHz17l5WZlEBH6Ny/D6UvXmLD2kN2hGW5CrMFOmUtoaKia6r/Gbf36IJyJgP7hViIBmP4ibJ1mteUqaG986Sg2Lp7mXy8lVzZv/urXgBvTsLqP+JeIyEssf6Mp2Xy8bI7SyChEZL2qhiZtd6vOdsNwugMr4OCK/12N3NDoNYiL8birkumbjnHwzBX6Ny9L4rm8/VuUIfLiNSasMVclRspMIjGMxJZ8BjkLQK3eN7cHloSqj0LYKLh40p7Y0llsXDw/LNpDpcL+tKiQ/6b36pQM4v4SgQxfupfoGNNXYtyZSSSGccOBlVb/SINXwcfv1vcbvW5dlaz6zvWxOcGMTcc4cOYK/ZuXIbnKQq+0KMupi9eYZPpKjBSYRGIYNyy9cTXyRPLvB5WCql1h3Ui4dMqloaW3WMe8kYqF/GlZsUCy29QtFUTtEoEMM1clRgpMIjEMsK5G9i+D+v2Tvxq5odFAiLsGK4a6LjYnmLHpGPtPX+bl21yN3PBKizKcvGD6Sow7M4nEMFRh0YfWvJHQPnfeNqgUVHvMuiqJcs+5r9dj4/lm4W4qF/GndaXkr0ZuqFcqL3VLBvHTkgiuXI91UYSGuzGJxDD2LrRmsTd6/c5XIzc0fgM0Hpb/x/mxOcHU9Yc5fPYqr7Uqd8erkRteb12W05euM2aVme1uJM8kEiNzU4VFH0FAMajRK3X75ClujeraMBbO7ndufOksOiaO7xdGEFo8D03Kpq7mXK3igTQtl4/hS/dyITrGyREa7sgkEiNz2zkbjm2Exm+Bt2/q92v4OmTxhqVfOC82Jxi/5hAnLkSn+mrkhtdalSPqagwjl7tX4jRcwyQSI/OKj4PFH0NQGWuOSFr4F4L7noLNkyByl3PiS2eXr8Xy0+IIGpTOS91SSVdnuLPKRXLTtnJBRq7Yz7nL150UoeGuTCIxMq9tf8Kp7dB0EHh5p33/Bq+CT3ZY8mn6x+YEo1cd4Mzl67zWquxd7f9qy7Jcvh7L8GV7U97YyFRMIjEyp7hYWPwJFKgMFR++u2PkyAt1nrcS0vHN6RtfOou6GsN/l+6lRYX81CiW566OUbZALjpWL8KYVQc4dSE6nSM03JlJJEbmFD4Rzu6Fpm9Dlnv436BuP8iW27pFloGNXL6PC9GxvNry7q5GbujfvAwxccqPjkWwDANMIjEyo9hr1uqHRWpBubb3diy/AKj3MuyeC4fXpkt46e3MpWuMXLGfB6sWolLh3Pd0rJC8OegaGsyEtYc4cu5KOkVouDuTSIzMZ91IiDpsLVqVhpFLt3X/c5AjHyx4zxpOnMH8sDiCqzFxvNri3q5GbnjJsW7J0H/2pMvxDPdnEomRuURHwbIvoWRTKNU0fY6ZNSc0fhMOroQ9/6TPMdPJ4bNXGPfvQR69ryil8+dMl2MWDvDjiXoh/LHxCDtPXEiXYxruzSQSI3NZ+R1cPQst3kvf49bsDXlKWFcl8RmnwOFX83fhlUXo3zx9rkZueKFJKXJm9eaLue4x9NlwLpcmEhFpIyK7RCRCRN5K5v2sIjLZ8f4aEQlxtAeJyGIRuSQiPyTZp7uIbBGRzSIyV0Tyuuh0DHdz8QT8+xNUfgQKV0/fY3v7QvPBcGobbJmavse+S9uORTEj/BhP1i9BwdzZUt4hDQKy+/JCk9Is2nmKNfvOpOuxDffjskQiIl7Aj0BboCLQXUQqJtmsL3BOVUsDQ4HPHe3RwGDg9STH9Aa+BZqqalVgM9b67oZxq6WfQ9x1aPaOc45f8WEoVN0quRJj//DYL+buwj+bD881LuWU4z9ZP4SC/tn4bO5OMuOS3cb/uPKKpDYQoar7VPU6MAnokGSbDsAYx/NpQHMREVW9rKorsBJKYuJ45BCr3oM/cMxpZ2C4r9MRsH6MVd03sKRzPiNLFmj5vtWRHzbSOZ+RSqsiTrN0dyT9mpYmt5+PUz4jm48Xr7Ysw8ZD55m3zTNWjTTujisTSRHgcKLXRxxtyW6jqrFAFHDbWg6qGgM8D2zBSiAVgWT/DxaRZ0QkTETCIiMj7/YcDHe16AOrsm+jN5z7OSWbWB35y760OvZtoKp8NncnhXNno2fd4k79rEdqBlMqXw6+mLeT2Lh4p36WkXG5dWe7iPhgJZIaQGGsW1uDkttWVUeoaqiqhubLl7qqp4aHOBIG22dYkwdzuuBn3+I9uHoOVn7r/M9KxpwtJ9h8JIpXW5Ylm4+XUz/L2ysLb7Qpz77Iy0xdf8Spn2VkXK5MJEeBooleBzvakt3G0f+RG7hTT151AFXdq9ZN2ilAvXSK1/AEqtZIqux5oZ6Lus8KV4fKnWH1T3DhuGs+0yEmLp4v5+2kbIGcdKoZ7JLPbFWxADWLBTD0n91cvZ5xRqwZruPKRLIOKCMiJUTEF+gGzEyyzUygt+N5Z2CR3rkX7yhQUURufM1sCexIx5gNd7d7HhxYbs3zyJrLdZ/b7B2Ij3V56ZQJaw5x4MwV3mxTHq8s6TDZMhVEhEEPVODUxWv8snyfSz7TyFhclkgcfR79gHlYf+ynqOo2EflARNo7NhsJBIlIBDAASBgiLCIHgK+BJ0TkiIhUVNVjwPvAMhHZjHWF8omrzsnI4OJiYP47EFQaQp907WcHloD7n4WN4+DEFpd8ZNTVGL5ZsJt6pYJoVj6/Sz7zhvtCAmlTqSDDlu41BR0zIZf2kajqHFUtq6qlVPVjR9sQVZ3peB6tql1UtbSq1lbVfYn2DVHVQFXNqarBqrrd0T5cVSuoalVVfUhVzaB2w7J+NJzZAy0/BC/njFy6o0avW7W45r3tktIpPy6O4PzVGN5+sEKaFq1KL2+1LU9MXDxf/7Pb5Z9t2MutO9sN47aunrfKxIc0vPfCjHfLL4+18uL+pbBnvlM/6uCZy4xeeYDONYPvuTDj3QrJm4NedUOYHHaYHcdN6ZTMxCQSwzMt/481cqr1x+lTmPFuhfaBwFLWLbY45613/vncnXhlEV5vXc5pn5EaLzUrjX82Hz6evcNMUsxETCIxPM/Z/bDmv1D9MShUzd5YvH2h1Ydwerd1q80Jwg6cZc6WEzzbuCQF/NO3FEpaBWT3pX/zMqyIOM2SXWa+VmZhEonheRa8B1m8nVcKJa3KPQDFG1hL8qbzJMX4eOXD2Tso4J+VZxo5acZ+GvWoU5yQoOx8PGeHmaSYSZhEYniWQ2tg+3RrsSn/wnZHYxGxbrFdOQvLv0rXQ/+1+Rjhh8/zeqtyZPe9i3XnncDXOwuDHqhAxKlLTFx3OOUdDLdnEonhOeLjYd7/Qc6CUP9lu6O5WeHqUK0b/DsMzh1Il0NGx8TxxdxdVCzkzyMumnyYWq0qFqB2iUC++Wc3F6Kd1zdkZAwmkRieY8sUOBpmlXP3zWF3NLdqNti65TZ/cLocbsSyfRw9f5V32lUgi4smH6aWiDD4wYqcvXKd7xealRQ9nUkkhme4dhH+eRcK14Rqj9kdTfJyF4EGA2DHTNi/7J4Odez8VX5aEkHbygWpVypjLsFTJTg3XWsV5deVB9gbecnucAwnMonE8AzLv4JLJ6DtF1Y594yqXj8IKAZ/vwlxsXd9mE//3okq/N8DFdIxuPQ3sE05/Hy8+OCv7WY4sAfLwP/HGUYqndkLq3+Eat2h6H12R3NnPn7Q+hM4tR3CRt3VIdbuP8tf4cd4tnEpigZmT+cA01fenFnp36IMS3dHsmjnKbvDMZzEJBLD/c17G7x8038ddmcp3w5KNLYKOl45m6Zd4+KVd2duo3DubDzvpJUP01vveiGUypeDD2dt51qsqQ7siUwiMdxbxALY/bdV1ypXQbujSR0RaPu51a+z6KM07Tpp3SF2HL/AoAcq4Ofr3LVG0ouPVxaGPFSJA2eu8OvKA3aHYziBSSSG+4qLgbmDrKVz67xgdzRpk78C1H4a1v+a6urAUVdi+M+8XdQuEUi7qoWcHGD6alw2Hy0qFOD7hXtMdWAPZBKJ4b7WjrBKj7T+FLyz2h1N2jV5C7IFWB3vqeiIHrpgN1FXY3jvoUq2VPe9V4PbVSAmzloG2PAsJpEY7uniSVjyGZRuCWVb2x3N3fHLA82HwMGVsPX3O26668RFfvv3II/dX4yKhf1dFGD6Kh6Ug6caluCPDUdZfzBtfUNGxmYSieGe/hkMsdHQ5jN7q/veq5q9oFB1a8BAdPKl11WVd6ZvwT+bN6+1tLe67716sWlpCuXOxjvTt5k6XB7EpYlERNqIyC4RiRCRt5J5P6uITHa8v0ZEQhztQSKyWEQuicgPSfbxFZERIrJbRHaKyCMuOh3DLvuXw+bJUL8/5C1tdzT3JosXPPg1XHJcYSXj9w1HWXfgHG+1LU+eHL4uDjB95cjqzZB2Fdlx/AK//XvQ7nCMdOKyRCIiXsCPQFugItBdRCom2awvcE5VSwNDgc8d7dHAYOD1ZA79NnBKVcs6jrvUCeEbGUXsdZjzujWpr8EAu6NJH8G1oNYTsGY4nNh601tRV2L4dM4OahYLoEutovbEl87aVC5Io7L5+Gr+btPx7iFceUVSG4hQ1X2qeh2YBHRIsk0HYIzj+TSguYiIql5W1RVYCSWpPsCnAKoar6qnnRO+kSH8+xNE7oS2X4Jvxp6MlybNh1jL8s4eYBWfdPhy/k7OXbnOhx0rZ7h6WndLRPigfSWux8Xz8ZwddodjpANXJpIiQOKa0kccbcluo6qxQBQQdLsDikiA4+mHIrJBRKaKSIF0i9jIWKKOwNLPrfU9yrWxO5r0lT0QWn4Ah9dA+AQANh85z/g1h+hdL8S25XOdJSRvDp5rXIoZm46xKsJ893N37t7Z7g0EA6tUtSawGvhPchuKyDMiEiYiYZGRZuU2tzT3LWuYbJvk+xLcXrXHoGgd+GcIcZfP8s70reTNmZVXW5a1OzKneKFJKYoFZmfwjK1cjzUd7+7MlYnkKJD4Jm+woy3ZbUTEG8gNnLnDMc8AV4A/HK+nAjWT21BVR6hqqKqG5suXL+3RG/ba8w/s+MuawZ6nuN3ROEeWLPDgV3D1PHsnvcHmI1G882AF/LP52B2ZU2Tz8eL99pXYG3mZkSv22x2OcQ9cmUjWAWVEpISI+ALdgJlJtpkJ9HY87wws0juUDHW89xfQxNHUHNienkEbGUDMVZgzEILKQL2X7I7GuQpW5mrNpyh9eBo9i0bSvloGWeXRSZqWz0/rSgX4buEejpy7Ync4xl1yWSJx9Hn0A+YBO4ApqrpNRD4QkfaOzUYCQSISAQwAEoYIi8gB4GvgCRE5kmjE15vAeyKyGegJvOaSEzJcZ9mXcG4/PPgf95zBnkbvXmjPKc3DO/H/ReLvvtS8uxjyUCVEYMiMbabUvJtyaR+Jqs5R1bKqWkpVP3a0DVHVmY7n0araRVVLq2ptVd2XaN8QVQ1U1ZyqGqyq2x3tB1W1kapWVdXmqnrIledkONnJbbDyW6v/oGQTu6NxuiW7TjFlSxTrKg4i65ntVnl8D1ckwI/XWpVj0c5TzN5y3O5wjLvg7p3thieLj4e/+kO23NAqbVVy3dGV67G8M30rpfLloNUjfa1y80s+g7P7Ut7ZzT1RL4Sqwbl5b+Z2oq6YNd7djUkkRsYVNhKOrLOKMua47Shwj/Htgj0cOXeVTztVJau3FzzwpbXG+6wBqSrq6M68sgifPFyFc1eu89lcM7fE3ZhEYmRMF47BgvehZFOo2tXuaJxu69Eoflmxn+61i1K7RKDV6F8YWrwL+xbD5in2BugClYvkpm+DEkxce5g1++40WNPIaEwiMTKmOQMhPhbaDXXvooypEBevDPpjC3my+/JWmyRrsIf2geD7YN4guOz5f1xfaVGG4Dx+DPpzi1lN0Y2YRGJkPDtmwc5Z1nodgSXsjsbpRq86wJajUbzXviK5syeZM5LFCx76FqKjrIrHHi67rzcfdazMvsjLDFuy1+5wjFQyicTIWKKjrKuRAlWg7ot2R+N0R85d4av5u2hWPj8PVrnNqocFKlmVjjeNh72LXRugDZqUy0+H6oX5afFe9py8aHc4RiqYRGJkLPMHw6UT0P5b8PLMGd03qFq3tAT4oEMKqx42GgiBpeCvl+HaJZfFaJfB7SqSI6sXA6dtJi7eswcaeII0JxIRyeEoCW8Y6WvvYtgwxpq9XqSW3dE43ZSwwyzfc5q3HqhAcJ4UKhn7+EGHH+H8YVj4vmsCtFHenFl5r30lNh0+zyhTPiXDSzGRiEgWEXlMRGaLyClgJ3BcRLaLyJci4uYrCxkZwrVLMPNlqwxKk0F2R+N0J6Ki+WjWDuqUDOTx2sVSt1PxunD/s9Za9QdXOTfADKB9tcK0qFCA/8zfxf7Tl+0Ox7iD1FyRLAZKAYOAgqpaVFXzAw2Af4HPRaSHE2M0MoMF70HUYejwg/Xt24OpKv/35xZi4uP5/JGqaVtnpPkQCCgOM16E655dm0pE+Pjhyvh6Z+HNaZuJN7e4MqzUJJIWqvqhqm5W1YRaz6p6VlV/V9VHgMnOC9HweAdWwrqf4f7noFgdu6NxuumbjrJo5ykGti5P8aAcadvZNwe0/96a7b74Y+cEmIEU8M/G4HYVWXvgrFmaNwNLMZGoagyAiHwrt+kNvLGNYaTZ9SvWt+s8IdDc84e3nroYzXszt1OreB6eqBdydwcp2RhqPWmtFnl4XbrGlxF1qRVMo7L5+HzuTg6f9eyrMHeVls72i8BMEckBICKtRWSlc8IyMo3FH1uVfdt/b33b9mCqyuDpW7kaE8fnj1TF616Wzm35AeQqZCXh2GvpF2QGJCJ82qkKArz1x2ZTITgDSnUiUdV3gInAEkcCuanMu2Gk2cHVVnXb0D5QopHd0TjdzPBjzNt2kldblKV0/pz3drBs/vDQd3B6V6a4xVUkwI9BD1RgZcQZxq0xBb4zmlQnEhFpDjwNXAbyAi+r6nJnBWZ4uGuXYPpzEFDM+nbt4U5ERTNkxjZqFAvg6YbpNFu/TAuo2QtWfgeH/k2fY2Zgj99fjIZl8vLJ7B0cMKO4MpS03Np6Gxisqk2wVi+cLCLNnBKV4fnmvwPnDsLDwyFrLrujcSpV5c3fN3MtNo6vu1bH2ysd5wG3/gQCisKfz3n8REUR4YvOVfH2El6fGm4mKmYgabm11UxVVziebwHaAp6/SISR/vYsgPW/Qr1+ULye3dE43YS1h1i6O5L/e6ACJfKmcz9Q1lzQcTicOwD/DEnfY2dAhXL78UGHSoQdPMfPyz1/nRZ3kZoJibcbqXUca430226TzLHaiMguEYkQkVv6V0Qkq4hMdry/RkRCHO1BIrJYRC6JyA+3OfZMEdmamjgMG105CzP7Qb4K0PQdu6NxuoNnLvPx7B00KJ2XHvcXd86HhNS36pKFjYSIBc75jAykY/UitK1ckK/n72bniQt2h2OQygmJIvKSiNw0/VZEfIG6IjIG6J3SQRxlVX7EupKpCHRPtO76DX2Bc6paGhgKfO5ojwYGA6/f5tidAM++rvcUcwbC5UjrlpZPNrujcaq4eOW1KeF4ZbFuyaRp4mFaNRsM+crDjH5w9ZzzPicDEBE+6lgZfz9vXp0czvXY+JR3MpwqNYmkDRAHTBSRY47SKPuBPUB34BtVHZ2K49QGIlR1n6peByYBHZJs0wEY43g+DWguIqKqlx231aKTHlREcmKNIDO32TK6bX/C1mnQ+E0oXN3uaJzul+X7CDt4jvfbV6JwgJNn6/tks5Lz5UgrWXu4oJxZ+bRTVXYcv8C3C3fbHU6ml5oJidGq+pOq1geKY93OqqGqxVX1aVXdmMrPKgIcTvT6iKMt2W1UNRaIAlJaY/VD4CvgjjOVROQZEQkTkbDIyMhUhmykmwvHrSVjC9eEBgPsjsbpdhy/wFfzd9O6UgEerpH019xJCteARm/Alqmw9XfXfKaNWlYsQJdawQxbspf1B8/aHU6mlqbhI44Z7COADDHoX0SqA6VU9c+UtlXVEaoaqqqh+fLlc35wxv/Ex1tDfWOuQqcR4OVtd0ROFR0TR/9JG/H38+GTh6vcuTx8ems4AIqEwqxXrUrBHm7IQxUpkseP/pM2cTHaFNiwy92MQ+wIFBOR8SJSNg37HQWKJnod7GhLdhsR8QZyA3daX7QuECoiB4AVQFkRWZKGmAxX+Pcn2LcE2nwKecvYHY3Tffb3TnafvMRXXasRlDOraz/cywce+Rni46whwfGevVxtrmw+fPNodY6dv8q7M7bZHU6mleZEoqpxqvoD0A94WkRSO612HVBGREo4Ouq7ATOTbDOT/3XcdwYW6R3qIajqMFUtrKohWNWIdzvmuRgZxfHN1voZ5dtBrSfsjsbpFu88xehVB+hTvwSNy9p05RtYEtp+AQdXwMpv7InBhWoVD+SlZmX4Y+NRZmxK+t3UcIU032MQkYeASkAFICvJdIAnR1VjRaQfMA/wAkap6jYR+QAIU9WZwEjgNxGJAM5iJZsbn3sA8Ad8RaQj0EpVt6c1fsOFrl+B358Cv0CrnIcrb/HYIPLiNQZOC6d8wVy80aacvcFUfwwi/oHFn0DJJh6/UNhLzUqzfE8k7/y5lZrF8lA0MIWFwox0JWktgOZYe2QLsN1dq/6GhoZqWFiY3WF4vtmvwbpfoOd0KNXU7micSlXpM3odq/ae4a+XGlC2QAaYrX/1HAyrD97Z4NllkPUe63tlcIfOXOGB75ZToVAuJj1T996KYhrJEpH1qhqatP1u+kj+AM4nKi/v2asQGXdn199WEqnbz+OTCMDY1QdZvMuavZ4hkgiAXx5rcMPZfTDX8+urFgvKzgcdKrHuwDl+WhxhdziZyt0Mn5kBHBORXfzv9lbXdI3KcG8XjlvlzQtWsVb083A7T1zgkzk7aFouH73qOmn2+t0KaQANXoUVX0Pp5lDpYbsjcqqHaxRhya5Ivlm4h3ql81KreB67Q8oU7uaKZI+q9gYaAy+qqkkixv/Ex8EfT1tDfR8ZCd4uHrXkYleux/Li+A34+/nwZZdqrh3qm1pN/88aEjzzZTi73+5onEpE+LBjZQoHZOPliRuJuuKWd9/dzt0kklAR+QaIBwqlts6WkUks+xIOLIcHv4J8Nnc4u8CQGdvYd/oy3z5anbyuHuqbWl4+0HkUIDCtD8Retzsip8rt58MP3Wty6mI0A6eFm4WwXOBuhv/WBv4DDAceB6amd1CGm9q/DJZ8BtW6W6OGPNzv648wbf0RXmpWhnql89odzp3lKQ4dfoBjG6zh2B6uWtEA3mxTnvnbTzJm1QG7w/F4aVnYqq2jIu8u4GvglKoOUdXOzgvPcBuXIuH3pyGoNDzwH7ujcbqIU5cYPGMr95cIpH9zN5lkWbE91H4GVv9gDYbwcH0blKB5+fx8MmcnW45E2R2OR0vLFclPWMUR62CVSflSRLo7JSrDvcTHw5/PWsNNu4z2+GGm0TFx9JuwgWw+XnzbrYZ7DTNt+SEUrArTn4eoI3ZH41Qiwn+6VCMopy/9Jm4wJVScKC2J5JSqrlTVc6q6AGiNtWqikdmt+hb2LoS2n0HBynZH43QfztrOzhMX+aprNQrmdrNS+D7ZrGQfFwPT+kJcrN0ROVWeHL58170GR85dZdAfW0x/iZOkJZHsF5GPHOVNAGIAz/4tNFJ2YCUs/BAqdoRaT9odjdPN2HSU8WsO8WyjkjQtl9/ucO5OUClo9w0c/hcWfWB3NE53X0ggA1qWZdbm44xbc8jucDxSWhJJPPAwcFhEVgARwBIRcZMbxEa6u3gCpj0JeUKg/fceXwJl98mLvPX7Fu4LycPrrd18RFrVLhDaB1Z+Cztm2R2N0z3fuBRNyuXjg7+2senwebvD8ThpWbP9MVWtBBQD+gPvAQL8LCImzWc2cbHWUNJrF+HRcZDN3+6InOrStVieG7eeHFm9+eGxmvh43c3I+QymzWfWGibTn4cze+2OxqmyZBG+ebQ6+XNl48XxGzh72bOHQLva3Qz/vaaq61V1lKr2V9Umqlos5T0Nj7LwfTi4Eh76FgokXTHZs6gqb07bzMEzV/jhsRoU8HezfpHb8c4KXcdCFi+Y0ssqsunBArL7MqxHTSIvXqP/pI3ExZv+kvTiAV+rDJfbPhNWfQehfaGq5xc2GLXyALO3HGdg63LUKZnSgp1uJqAYdPoFTm6zimx6eGd01eAA3mtfieV7TvPdwj12h+MxTCIx0uZ0BEx/wVoyt82ndkfjdOsOnOXTOTtoVbEAzzYqaXc4zlGmBTR+A8InwIYxdkfjdN1rF6VTzSJ8t2gPS3adsjscj2ASiZF61y/DlJ5WyY2uYz2+jtapi9G8OH4DwXn8+E/XDFpHK700fhNKNYM5A+HoerujcSoR4eOOVShXIBevTN7E4bOefUvPFdKUSESk4J1eGx5M1boSidwJj/wCAUVT3seNXY+N5/lxG7gYHcuwHrXwz+Zjd0jOlcXLusWVsyBM7gmXPPubup+vF8N71CIuXnnmt/Vcve7ZSxI7W1qvSEam8PqORKSNiOwSkQgRuWWBBBHJKiKTHe+vEZEQR3uQiCwWkUsi8kOi7bOLyGwR2Ski20TkszSej5FaK4bC9unQ/F2rHLmHe++vbaw/eI4vu1SlQiHPHpGWIEcQdBsHV85ane8eXtwxJG8Ovuteg50nLvDG75vNZMV7kKZEoqoP3un1nYiIF/Aj0BaoCHQXkaTDffoC51S1NDAU+NzRHg0MBl5P5tD/UdXyQA2gvoi0TW1MRirtWQALP4BKnaB+f7ujcboJaw4xYc0hnmtcinZVC9sdjmsVqmbNCTq0GuYNsjsap2taLj+vtyrHX+HHGLFsn93huK20FG18SUQC7uGzagMRqrpPVa8Dk4AOSbbpANzo7ZsGNBcRUdXLqrqCJOvDq+oVVV3seH4d2AAE30OMRlJn9sLvfaBAZat6rCf3EwDrD57l3ZlbaVQ2HwPdfdLh3araBeq9ZK1wuWGs3dE43QtNSvFAlYJ8Pncny3ZH2h2OW0rLFUkBIExEpjhuUaX1L0oR4HCi10ccbcluo6qxQBSQqvGWjiT3ELAwjXEZt3PtIkx6HCSLdcvDN4fdETnViahonhu3gcIBfnzvbsUY01vz96BkE2tI8OF1dkfjVCLCl52rUbZALl6auJGDZy7bHZLbScvM9neAMlj9Ik8Ae0TkExEp5aTYUk1EvIGJwHeqmuz1qYg8IyJhIhIWGWm+daQoPt6a8Xx6l1XkL0+I3RE5VXRMHM+NW8/la7GM6BlK7uwe3rmeEi9v6Pwr5CoEk3tYyyd7sBxZvflvz1oAPDPW+j0wUi+tfSQKnHA8YoE8wDQR+SIVux8FEg/1CXa0JbuNIznkBs6k4tgjsJYA/uYOsY9Q1VBVDc2XL18qDpnJLfkUdvwFrT6yvpl6MFVl0B9b2HT4PF91qUa5grnsDiljyB4I3SY4rkwfs5ZP9mDFg3Lww2M12HPqIv0nbSLezHxPtbT0kfQXkfXAF8BKoIqqPg/UAh5JxSHWAWVEpISjgnA3YGaSbWYCvR3POwOLNIWhFCLyEVbCeSW152KkYPNUWPYF1OgJdV6wOxqn+2nJXv7ceJTXWpalbZVCdoeTsRSsDI/8DMc2WsO/PXxkU8My+RjSriILdpzki3m77A7HbXinYdtAoJOqHkzcqKrxItIupZ1VNVZE+gHzAC9glKpuE5EPgDBVnYl12+w3EYkAzmIlGwBE5ADgD/iKSEegFXABa02UncAGR7fND6r6SxrOy0jsSBjMeBGK14cHv/b4zvW5W4/z5bxdtK9WmH7NStsdTsZU/kFo8R4seBfylYcmb9odkVP1rhdCROQlhi/dS+n8Oelcy4zfSUlaEkm2pElERD5X1TdVdUdqDqCqc4A5SdqGJHoeDXS5zb4htzmsZ/+lc6WoIzCxO/gXgq6/gbdvyvu4sa1Ho3h1cjjViwbwReeqnj1z/V7V7w+Ru2DJJ5C3DFTuZHdETiMivPtQJfafvsygPzZTPCg794UE2h1WhpaWPpKWybSZORue4tolmNANYqOh+2RrcpoHO3UhmqfHhpEnuw8jetUim4+X3SFlbCLw0DdQtI41CMPDy6j4eGXhp8dqUTRPdp79bb0po5KCFBOJiDwvIluA8iKyWUS2OB4HgC1Oj9Bwvvg4a831U9uskTr5y9sdkVNFx8Tx9G/rOX8lhp97h5I/l4eUhXc276zQbTzkzA8TH4OopGNlPEvu7D780juU2Lh4+o5ZxwWz5vttpeaKZDzW/IzpQDvH40Gghqo+7rzQDJeZ/w7snAWtP7UqwXqwuHjllUmb2HzkPN90q06lwrntDsm95MhrXbFevwwTukL0BbsjcqqS+XIyrEct9kVe5sXxG4iJi7c7pAwpNYlkjqoeANoDW7GuQrYCh0TEs3+LMoN/h8O/P8H9z0Od5+yOxuk+mbODudtO8M6DFWldydQcvSsFKsKjY60CnlN6QZxnf1OvXzovn3aqwvI9p/m/P7aYmlzJSDGRqGoDx785VdU/0SOXqmaSanYeascsmPsWlG8HrT+2OxqnG71yPyNX7OeJeiH0bVDC7nDcW6lm1uqY+xbDrFc8flhwl9CivNy8DFPXH+H7RRF2h5PhpGXUluFJjqyH35+CIrWg089WGXEPNn/bCd6ftZ1WFQswuJ1nLw3sMjV6wLmD1pyjgBBoPNDuiJzq1RZlOHLuCl//s5vgPH50qmmGBd+QlgmJXUQkl+P5YBH5Q0RqOi80w2nO7rfub+cqAN0ngW92uyNyqk2Hz/PypI1UDQ7g28xeQyu9Nf0/qNoNFn8E4ZPtjsapRITPOlWlXqkg3vx9M6siTtsdUoaRluG/g1X1oog0AJpjTR4c5pywDKe5fAbGdwGNg8enQU7PLhdz8Mxlnhqzjny5sjKydyh+vp595eVyIlbZ+ZCG1kTWfUvsjsipfL2zMKxHLUrkzcGz49az84TpJoa0JZIbS4g9CIxQ1dmAZ89Y8zTXL8OELhB1GLpNtCaWebDIi9foOXItcfHK6CdrkzenZy8NbBtvX3h0nPX7NKkHHNtkd0ROldvPh1+frE12Xy96j1rLkXNmjklaEslREfkvVtmSOSKSNY37G3aKi7FG2BzbCJ1HQfG6dkfkVBejY3ji17VEXrzGqCfuo1S+nHaH5Nn8AqDH79a/4zvDWc9eJKpIgB9j+9zP1etx9Bq1lrOXPXs1yZSkJRF0xaqT1UpVz2NV/vXs3jVPER9v3XaIWADtvrFqJ3mwa7FxPPvbenaduMiwHjWpUSyP3SFlDv6Foccf1gTX3x72+HXfyxXMxS+97+Pouas8OXodV65n3tLzab21lQ3oIiJDgGeAOk6JykhfC4bA5snQ7B2o1Tvl7d1YXLwyYHI4q/ae4YvOVWlSLr/dIWUu+crC41OtJDLuEY+fsFi7RCDfd6/BliPneX5c5p2wmJZEMgNrUmIscDnRw8jIVn1vPe57Ghomt+S951BVPvhrG7O3HOf/HihvhmfaJTgUuo6FU9th8uMQe83uiJyqVaWCfPJwFZbujuSNaZsz5TomaZlHEqyqbZwWiZH+Noy1yp9U7AhtP/f4kvBD/9nNmNUHebphCZ5pZPvCnZlbmZbQ4Uerhtu0PtBljLXqoofqVrsYkRev8dU/u8nt58O7D1XMVNWk03JFskpEqjgtEiN9bf0dZr4MpZpDpxEeP+FwxLK9fLcogq6hwfzfAxXsDscAqNYN2nxu1XGb8aLVV+fB+jUrTd8GJRi96gBf/7Pb7nBcKi1fERoAT4rIPuAa1jogqqpVnRKZcfd2z4M/noFida1hmd6ePex1wppDfDJnJw9WKcSnncy6IhlKneespXoXfwRZc8EDX3rslbGI8M6DFbh8LZbvF0WQK5t3prkyTksiMWuPuIMDK6xhvgUqwWOeP2t9xqajvD19C03K5WPoo9XNrPWMqNHrcC3K6qvL5g/Nh6S8j5sSET5+uAqXrsXyyZyd5Mzqw2P3F7M7LKdLy62tQ0BDoLdjpUQFCqTlw0SkjYjsEpEIEXkrmfezishkx/trRCTE0R4kIotF5JKI/JBkn1qO9VEiROQ7ycxfR4+shwmPQp4Q6PEnZPPsEukLtp/ktSnh1A4JZHiPWvh6m2lNGZIItPwQaj0By7+CFUPtjsipvLIIX3etTtNy+Xh7+hZmbPLsdVsgbYnkJ6Au0N3x+iLwY2p3FhEvx/ZtgYpAdxFJWj2vL3BOVUsDQ4HPHe3RwGAguWFHw4CngTKOR+YcEHB8M4zrBNmDoOd0j1/hcNnuSF6YsIFKhf35pXeoWeEwoxOBB7+GKl1gwXuw5r92R+RUN0qp1A4JZMCUcOZuPWF3SE6VlkRyv6q+iPVHHVU9R9pKpNQGIlR1n6peByYBHZJs0wEY43g+DWguIqKql1V1xY3PvkFECgH+qvqvWosEjAU6piEmz3ByG4ztAL45ofdMa811D7Yq4jRPjw2jZN4cjH6yNrmy+dgdkpEaWbyg4zBr2YK/34B1I+2OyKmy+Xgx8on7qBqcm5cmbmDB9pN2h+Q0aUkkMY6rCgUQkXxAWoZhFAEOJ3p9xNGW7DaqGgtEAXf6al3EcZw7HRNHvM+ISJiIhEVGRqYh7Azu1E4Y097qUO8907qt5cHW7DtD3zFhFA/Kzvin7idPDlPuza14+VjLOZdtC7MHwPoxKe/jxnJm9WZMn9pULOTPC+M3sHinZ872T0si+Q74EyggIh8DK4BPnBKVE6jqCFUNVdXQfPk8pOLt6T0w5iHrm17vWRDk2SNEwg6c5cnR6ygckI3xT9UhyBRhdE/evtB1DJRuCX/1h43j7Y7Iqfyz+TC2z/2ULZiTZ8etZ9luD/oi65DqRKKq44E3sJLHMaCjqk5Nw2cdBYomeh3saEt2GxHxBnIDZ1I4ZuLpy8kd0zOd2WslERR6/wV5S9sdkVNtOHSOJ35dR0H/bEx8ug75cpkk4ta8s1pD00s2seaYePhaJrmz+/Bbn/splS8nT48NY6WHrWWSYiIRkQE3HsADQFbHo62jLbXWAWVEpISI+GJVEZ6ZZJuZwI1iUJ2BRXqHBZJV9ThwQUTqOEZr9cIq5eLZbiSRuOtWEslXzu6InGrDoXP0HrmWoJy+THi6Dvn9s9kdkpEefLJB94lQoiFMf87jk0meHL6Mf+p+QoJy0HfMOo9KJqm5IsnleIQCz2P1QRQBngNSvUKio8+jH1YF4R3AFFXdJiIfiEh7x2YjgSARiQAGAAlDhEXkAPA18ISIHEk04usF4BcgAtgL/J3amNxS5G749QGIjYZeMyG/Z8/iXnfgLL1GriUwpy8Tn65DwdwmiXgUHz9rlc6QBlY5FQ+/zRWYw5fxT99P8cAc9Bm9jqUecptL7vCF/+YNRZYBD6rqRcfrXMBsVW3kxPicIjQ0VMPCwuwOI+1O7XDczhKrY93Dk8i/+87QZ7R1O2uCSSKe7foVmPSYtcLiQ99Yc0482NnL1+nxyxoiTl1ieM+aNCufpil5thGR9aoamrQ9LZ3tBYDEq7dcJ40TEo17cGILjH4QxAuemO3xSWRlxGme+HUtRQL8mPSsSSIezze7dWVSxtEBv/ZnuyNyqsAcvkx4+n7KFczFs7+tZ/42955nkpZEMhZYKyLvich7wBpgtDOCMpI4tsm6EvHOBk/OsdZ88GBLd0fSZ/Q6QoJyMPGZOuTPZZJIpuCTzeqAL/cAzHkd/h1ud0ROFZDdl3FP3U+lwrl5YfwG/t5y3O6Q7lpaRm19DDwJnHM8nlTVT50VmOFwaI01T8Q3p3Ul4uFDfOdtO8HTY8IolS8nE56uY9ZZz2y8s1ol5ys8BHPftEqqeLDcfj781rc21YoG0G/iRv7ceCTlnTKgNBUnUtUNqvqt47HRWUEZDnsXw28drXInT86BwBJ2R+RUf2w4wgvjN1CxsD8Tnr6fQDPZMHPy9rUmLVbpCgs/gH/ehVT25bqjXNl8GNunNveXCOTVyeH8tvqA3SGlmalyl1Ht+AsmdIXAktBnHgR4dgXRsasPMGBKOPeXCGT8U/cTkN0kkUzNywce/i+E9oGV31iz4D14PZMcWb0Z9cR9tKhQgMEztvHj4gi7Q0oTz12yzJ1tmmhN0ipS01r/2i+P3RE5jary05K9fDlvFy0qFOCHx2qYAoyGJUsWq9BjVn8rmVy7aNXq8vLM2mrZfLwY1qMmA6eG8+W8XVyMjuXNNuXcYn0dk0gymjUj4O+BUKIRdJsIWXPaHZHTqCqfzd3Jf5fuo2P1wnzZpRo+XuYi2UhEBFq+by2JsPB9uHYJuvxqzT/xQD5eWfi6a3VyZPVm+NK9XIiO4cMOlTP8OjsmkWQUqrD4Y1j2pTVqpfOv1igWDxUTF8+gP7Ywbf0RetQpxgftK5Mlg//PYtio4QBrhcU5A+G3TtB9gsdeqWfJInzUsTL+fj4MW7KX81eu83XX6hn6St0kkowgLhZmvwobxkKNHtDuW/Dy3B/N1etxvDhhA4t2nqJ/8zK80qJMmi/fL1y4wKlTp4iJiXFSlEZ68fHxIX/+/Pj7+9/bgWo/DdkD4Y9nreoOPX4H/8LpE2QGIyK82aY8QTl8+Wj2Ds5eXsuIXqH4Z9AlEzz3r5W7iLkK0/rArjnQ8HVo9o7HrmkNcO7ydfqMWcemw+f5qGNletQpnuZjXLhwgZMnT1KkSBH8/Pzc4h5yZqWqXL16laNHrVqq95xMKj9iLd42qQeMbAU9/vDoeVVPNSxJ3pxZeX1qOI/+91/GPHlfhqw1Z25I2+nKWRjbEXb9DW2/hOaDPTqJHD1/lc7DV7Ht2AWGPV7zrpIIwKlTpyhSpAjZs2c3SSSDExGyZ89OkSJFOHUqndbiKNkEnphl1Zsb1QoOr0uf42ZQHWsUYdQT93HwzGU6DVvFvshLdod0C5NI7HL+EPzaFo5tgM6j4P5n7I7IqbYfu8AjP63i1IVrjO1TmzaV734Vx5iYGPz8PLOz1VP5+fml723IwtWh73zIFmBVfdg5O/2OnQE1KpuPiU/X4cr1ODoPX82GQ+fsDukmJpHY4dhG+KUFXDgOj0+Dyp3sjsiplu6OpMvwVQBMea4udUre+3ry5krEvTjl5xVY0kom+cvDpMc9fh34akUD+P35euTK5k33Ef9mqJIqJpG42q65Vkehly/0nQclG9sdkVNNXHuIPqPXUSwoB9NfrE+FQvd4j9wwEsuZ3yodVO4Bax34uf8H8XF2R+U0JfLm4I/n61GpsD8vTNjAL8v3kdoK7s5kEokrrf0ZJnW3FqJ6aqFHV/CNj1e+mLuTQX9soUHpvEx9rq6p4Gs4h28OePQ3uP85+PdHmNLLKkvvoYJyZmXC03VoW7kgH83ewbsztxEXb28yMYnEFeLjYN7bVkXTsm2sb1C5PLcCf3RMHP0nb+KnJXt57P5ijOwdSs6sZoCg4URZvKDt59DmM6u/ZMxDcCmdOvczoGw+XvzQvSbPNirJ2NUHeWZsGJeuxdoWj0kkzhZ9wVqwZ/UPUPtZq0y2bw67o3KaUxej6TbiX/4KP8ZbbcvzccfKeJvZ6hmaqlK9enXGjBmTpv369etH3759nRTVXarzvPX/2KntMKKptY6Ph8qSRRj0QAU+7FiZJbsj6TxsFUfO2XMl5tL/w0WkjYjsEpEIEXkrmfezishkx/trRCQk0XuDHO27RKR1ovZXRWSbiGwVkYkiknHun5w7CKNaw55/4MGv4IEvrG9OHmrr0Sg6/LCSXScu8t+etXiucSnTKe4GpkyZwtmzZ3nsscfStN/rr7/O+PHjiYjIYAUGK7SDJ/8GjYeRrT1+RFfPOsX59Yn7OHr+Kh1/XMn6g2ddHoPLEomIeAE/Am2BikD3ROuu39AXOKeqpYGhwOeOfSsC3YBKQBvgJxHxEpEiwMtAqKpWBrwc29nv4Gr4uSlcOGrNwL3vKbsjcqq5W4/TZfhqBJj2fF1aVypod0hGKn333Xf07NkTH5+0zZoOCQmhQYMGDBs2zEmR3YPC1eGZxVZ/5KTHYcVQjy5F36hsPv58oT45s3rTfcQa/tjg2nVNXHlFUhuIUNV9qnodmAR0SLJNB+DG9fU0oLlYX2k7AJNU9Zqq7gciHMcDa3a+n4h4A9mBY04+j5RtHG/do/XLA08tglJN7Y7IaVSVHxbt4blxGyhXMBfT+9WnUuHcdoflNgIDAxk8eDCPP/44QUFBBAYG8uyzz3Lt2jWXfH5ERASrVq2ic+fON7UvXboUEWHOnDkJbfv37yd//vy8/PLLCW2PPPII48ePJz4jlnjPVdBax6dyJ1jwHkx/HmKi7Y7KaUrnz8n0F+tTq3geBkwJ57O/d7qsE96ViaQIcDjR6yOOtmS3UdVYIAoIut2+qnoU+A9wCDgORKnq/OQ+XESeEZEwEQmLjIxMh9NJRlwMzHkDZrwAIfXhqQWQt7RzPisDuHwtlhcnbOA/83fTsXphJpllcdPk0KFDnDt3jqFDhxIYGMjUqVN55ZVXGDFiBD/++KNLYli4cCE5cuSgWrVqN7U3btyYpk2b8vHHHwMQFRVFu3btqF27NkOHDk3Yrl69epw8eZItWzJoX4SPHzwyEpq+DeETrUnAUUftjsppArL7MrZvbR67vxjDl+6l75h1RF11fj06tx5KIyJ5sK5WSgDngaki0kNVxyXdVlVHACMAQkND0z9NX4qEqU/AwRVQtx+0eN+jCy8ePHOZZ8auZ8+pi7z9QAWealjC1v6Q9//axvZjF2z57IqF/Xn3oUpp3i88PBywOq0/++wzAJo1a8ayZcuYO3cuAwYMSNc4k7N+/XoqVKhAliy3fqd8//33adSoEfPnz+err77Cx8eHSZMm4eX1v36+SpUq4eXlxdq1a29JRhmGCDR+A/JXhD+fhRGNoetYKF7P7sicwscrC588XIVKhf15b+Y2OvywghG9QilbIJfTPtOVVyRHgaKJXgc72pLdxnGrKjdw5g77tgD2q2qkqsYAfwCu/+04thFGNIGjYdDpZ2j9sUcnkaW7I3no+xWcvBjNmD61ebpRSdOpfhfCw8PJnj07AwcOvKm9bNmynD1rdZhOnz4dEbmpH+LQoUP4+fnRsWNHAGJjY6lfvz6XLt25BlNcXBz16tXj/PnzCW0nTpwgb968yW7fsGFDWrRowcMPP8zWrVuZNWsWOXPevD6Ot7c3AQEBnDhxIrWnbZ8K7eDpRdbaJmMesuZ1eXC/yeP3F2fi03W4dC2Oh39cydytzpsJ78q/duuAMiJSAisJdAOSDhOZCfQGVgOdgUWqqiIyE5ggIl8DhYEywFogHqgjItmBq0BzIMwVJ5Ng00SY9QrkyGctiVu4uks/3pVUleFL9/HlvJ2ULZCLET1DKRaU3e6wAO7qisBu4eHhNGrUiKCgm0vGnDhxgsKFrfLomzZtonr16mzfvj3h/bfffpty5cpRvXp1AMaNG0fTpk1v+SOflJeXF7169eL7779n8ODBAERHR5M9++1/hqVLl2bBggV8++23BAcHJ7tN1qxZiY52k76HfOWsZPLHM9a8ruOb4IGvPHbtn9CQQGa91IDnxq3nuXEbeKlZaV5tUTbd1/5x2RWJo8+jHzAP2AFMUdVtIvKBiLR3bDYSCBKRCGAA8JZj323AFGA7MBd4UVXjVHUNVqf8BmCL43xGuOSEYqLhr1dg+nMQfB88s8Sjk0jU1Rie+W09n8/dyQNVCvHHC/UyTBJxV+Hh4QkJ44aLFy+yaNEimjdvDliJpEePHgmJZMOGDRw7dozg4OCERPLrr7/SpUuXhGO0adOGFStWJLwuXbp0whVD586db5ovEhgYeNMVSmIjRoxg1KhRVKtWjZEjR972PM6fP09gYGDqT9xu2XJbq482egM2joORLeHsfrujcpqCubMx+dk6PBpalLGrD3LyohOSvqpmuketWrX0npw9oDq8keq7/qrzh6jGxtzb8TK4bUejtNEXi7TUoNn6y/J9Gh8fb2s827dvt/Xz08OlS5c0S5Ys2rhx45vaP/roI82dO7eeO3dOVVWLFy+u+/bt01KlSqmqavPmzXXdunUaHBys+/fv1+vXr6u/v7/GxsYmHKNgwYJ64cIFVVWNiorSggUL3vQZJUuW1EOHDqmq6pAhQ7RYsWK3xDd//nz19vbWMWPG6OrVqxXQOXPm3LLdqVOnFNCZM2emeM4Z8ue2c47qp0Wtx86/7Y7GqeLj4/XouSv3dAwgTJP5m2qmHKfV7vnw30bWN5huE6z1pD24P2RK2GEe/mkl0TFxTHqmDn0b2Nup7im2bNlCfHw8e/fu5YMPPmDx4sUMGjSI999/nxEjRhAQEMD58+eJioqiRIkSBAUFMW7cOPLly0eJEiW4dOkSISEhnD59mpw5cyZ0gB87dowcOXKQK5fVsRoeHk7VqlVv+uyCBQsmLDRVv359Dh06ROKRjNu2baNLly68+eab9OrVizp16tCiRQvee++9W84jLCwMEaFePTftuC7XFp5ZCnlCYOKjsPADjy36KCIUDnDO8gsmkaRWfBws+ggmdIHcReHZJVD+Qbujcpqr1+N4c9pm3pi2mVrF8zD75YaEhrjR7YsMLjw8HH9/f2bPns2MGTNo06YNs2fPZurUqXTt2hWwbmvdSAJVqlTh1Vdf5ZNPPiE8PDxhhJSfn99Nc042bdpEjRo1El6vWbPmltFUV69eTVjPpUmTJgQGBjJ37lzAWjSsXbt2tGrVig8//DBhn8GDB7N27Vpmz755lvjcuXNp3LjxLf08biWwBPSZDzV7w/Kv4LeOcPGk3VG5Fc/9Ku0MR8KsNdUf+I81Pt1D7Tl5kRcnbGD3yUu82LQUA1qWwyudO+cyu/DwcKpUqULVqlVZv359stts2rQpIQn07duXNm3aUKJECaZPn57QPxIQEEC2bNk4e/YsgYGBREZGJvRXnD17lp9++omPPvoo4Zjx8fEcPnyYsmWt5Wl9fX3p0aMHkyZNomfPnuTPn5/9+2/tL2jUqNEt5crj4uL4/fffE4YuuzWfbND+Oyh6P8x+DYbXh04joFQzuyNzCyaRpFYWL+g+yWNHd4DVXzY17AhDZm4lZ1ZvxvapTaOy+ewOyyOFh4cnJIPb2bRpEw0bNgSgbt26N+3bpEmThNft27dn4cKFdOnShdatW/Pdd9/RtWtXihUrhp+f301XJGvWrKFOnTo3rTA5cOBAypYty+7duxMSTGpMnToVPz8/unXLGFWJ0kWNx6FITWtO2G+doOEAaPJ/Hn37Ol0k13Hi6Y977mz3QBejY7T/xA1a/M1Z2n3Eaj0ZddXukG4rQ3bapkF8fLzmypVLhw8fni7H27Fjh7Zt2zZV2/bt21cXLFhwS/vEiRN1yZIlafrcCRMm6NKlS1O9vVv93K5dVp3RzxpQ80sr1fOH7Y4oQ+A2ne0mzRqEHz5P/0kbOXT2Cq+1LMsLTUubW1lOJCJcuJB+s/DLly9P9+7duXTp0h3nksTFxREaGpowtDixu7mq6N69e5r3cRu+2aH99xDSyJonNqy+9bpi+xR3zYxMZ3smFhev/Lg4gkeGreJ6bDwTn67DS83LmCTihnr27JmqCYnPPfeciyLyEFW7wLPLrA75KT1hRj+4ducKApmRuSLJpI6ev8qrkzexdv9Z2lUtxMcdq5A7e9rKiBtGphBUyhrVteRTqxz9wVXwyM9QpJbdkWUY5ookE5oZfow23yxj+7ELfN21Gt93r2GSiGHcibcvtHgXnpgFsddgZCtY9h+PnXOSViaRZCLnLl+n34QNvDxxI2Xy52TOyw3pVDPYTDA0jNQKaQDPr4AK7WHRhzCqDZzZa3dUtjOJJJNYtPMkrb5ZxrxtJxjYuhxTnq1ramUZxt3wywOdR0GnX+D0LhjewKoknBEX93IR00fi4S5Gx/DhrO1MCTtC+YK5GPNkbSoW9rc7LMNwbyJWR3xIfZj5klVJeOcs6PAj5E6+SrInM1ckHmz5nkjafLOcaeuP8EKTUszoV98kEcNIT/6F4fFp0O4bOLwOfqoL68d49DonyTGJxANFXY3hjWnh9By5lqw+WZj6XD3eaFOerN5eKe9sGEbaiEDok/D8SihUDf562arXde6g3ZG5jEkkHmbB9pO0GrqU3zcc5fkmpZjzckNqFc9jd1iG4fkCS0CvmdBuKBxZb12drBmRKfpOTB+Jhzh96RofztrOjE3HKF8wFz/3CqVqcIDdYRlG5pIlC4T2gdIt4a/+8PdA2PYHPPQd5Et9HTN349IrEhFpIyK7RCRCRN5K5v2sIjLZ8f4aEQlJ9N4gR/suEWmdqD1ARKaJyE4R2SEidZMe15OpKlPWHab5V0uZs+U4/ZuXYWa/BiaJGIadAopCj9+hw09waodVTXjxp9YcFA/kskQiIl7Aj0BboCLQXUQqJtmsL3BOVUsDQ4HPHftWxFrjvRLQBvjJcTyAb4G5qloeqIa1jG+msC/yEt1//pc3ft9M2QLWvJBXW5bF19vcsTRST1WpXr36TUvwpka/fv3o27evk6LyACJWNeF+66x5J0s/s4YKH1hpd2TpzpV/cWoDEaq6T1WvA5OADkm26QDc+G2eBjQXa7ZcB2CSql5T1f1ABFBbRHIDjbDWekdVr6vqeeefir2iY+L4dsEe2ny7nG3HLvBppypMfqYuZQrksjs0ww1NmTKFs2fP8thjj6Vpv9dff53x48cTERHhpMg8RM780HkkPP47xEbD6Aesml1XztodWbpxZSIpAhxO9PqIoy3ZbVQ1FogCgu6wbwkgEvhVRDaKyC8ikiO5DxeRZ0QkTETCEi8r6m6W7o6kzTfLGLpgNy0rFmDha43pXrsYWUyhReMufffdd/Ts2RMfn7SVyQkJCaFBgwYMGzbMSZF5mDIt4IV/od5LsGkCfF/LGirsAZ3x7n4PxBuoCQxT1RrAZeCWvhcAVR2hqqGqGpovn/st1nTs/FWeH7ee3qPWIiKM7VObHx+rSf5cnrvQVmYQGBjI4MGDefzxxwkKCiIwMJBnn332puVznSkiIoJVq1bRuXPnm9qXLl2KiDBnzpyEtv3795M/f35efvnlhLZHHnmE8ePHE+8BfwxdwjcHtPoInlsO+cpZQ4VHtYLj4XZHdk9cmUiOAkUTvQ52tCW7jYh4A7mBM3fY9whwRFXXONqnYSUWj3E9Np7hS/fS4uulLNp5itdblWXuKw3NyoUe4NChQ5w7d46hQ4cSGBjI1KlTeeWVVxgxYgQ//vijS2JYuHAhOXLkuGVd98aNG9O0aVM+/vhjAKKiomjXrh21a9dm6NChCdvVq1ePkydPsmXLFpfE6zEKVIIn/4aOw+HsfhjRBOYMhKvn7I7srrhy+O86oIyIlMBKAt2ApDdlZwK9gdVAZ2CRqqqIzAQmiMjXQGGgDLBWVeNE5LCIlFPVXUBzYLuLzsfpFu08yYezdrD/9GVaVCjAuw9VpGigqY+VrL/fghM2/TErWAXapn3d8vBw61tov379EtY9b9asGcuWLWPu3LkMGDAgXcNMzvr166lQoQJZstz6nfL999+nUaNGzJ8/n6+++gofHx8mTZqEl9f/JrZWqlQJLy8v1q5de0syMlIgAtW7Q7k2sOgjWPcLbJkGzQdDzd7W8t5uwmVXJI4+j37APKyRVVNUdZuIfCAiN5YdGwkEiUgEMADHbSpV3QZMwUoSc4EXVfVG/eaXgPEishmoDnziolNymr2Rl3ji17X0GR2GCIx+8j5+6R1qkoiHCQ8PJ3v27AwcOPCm9rJly3L2rNURO336dETkpn6IQ4cO4efnR8eOHQGIjY2lfv36XLp0+wWX4uLiqFevHufPn7+p/cSJE+TNmzfZfRo2bEiLFi14+OGH2bp1K7Nmzbpl8Sxvb28CAgI4ceJEak/bSMovDzz4FTyzFPJXgFmvwojG1ronbsKlExJVdQ4wJ0nbkETPo4Eut9n3Y+DjZNo3AaHpGqhNoq7E8MPiPfy68gB+Pl6882AFetUNMcN5U+MurgjsFh4eTqNGjQgKCrqp/cSJExQuXBiATZs2Ub16dbZv/9+F9ttvv025cuWoXr06AOPGjaNp06Z3XCHRy8uLXr168f333zN48OCE9ujoaLJnv/0XlNKlS7NgwQK+/fZbgoOTL0aYNWtWoqOjUzxfIwWFqsITs2HbnzB/MPzaFip1ghbvQZ7idkd3R+YvVAYQExfPryv30/g/i/llxX4eqRnMoteb8FTDkiaJeLDw8PCEhHHDxYsXWbRoUcK66ps2baJHjx4JiWTDhg0cO3aM4ODghETy66+/0qWL9f1rx44dVKpUKeF4V69epWzZshw9epTOnTvfMlckMDDwlquUG0aMGMGoUaOoVq0aI0eOvO15nD9/nsDAwDSdu3EbIlC5kzX3pPFbsOtv+OE++OddiI6yO7rbU9VM96hVq5ZmBPHx8Tp363Ft8uViLf7mLH3s59W67WiU3WFleNu3b7c7hHt26dIlzZIlizZu3Pim9o8++khz586t586dU1XV4sWL6759+7RUqVKqqtq8eXNdt26dBgcH6/79+/X69evq7++vsbGxqqoaExOjuXLl0piYGFVV/fTTT3XQoEEJxy9ZsqQeOnQo4fWQIUO0WLFit8Q3f/589fb21jFjxujq1asV0Dlz5tyy3alTpxTQmTNnpnjOnvBzc7nzR1T/eFb1XX/Vz0uorhmhGnvdtnCAME3mb6rtf9TteGSERLL+4FntMnyVFn9zljb/aoku3HFC4+Pj7Q7LLXjCH6Qbf5yDg4P1/fff10WLFulbb72lPj4+OnnyZFVVPXfunAYEBKiqau3atfW3337Tbt266enTpxPajx07poULF77p2NWrV9ft27frmTNntHTp0nr+/PmE9+rVq6erV69OeD1v3jwF9NSpUwltW7du1dy5c+vbb7+d0NaiRQutXbv2LecxZ84cFRE9ffp0iufsCT832xzdqPrrg1ZC+T5UdftMVRv+XtwukZj7Ji4WceoSz/22nk4/rWJf5CU+7FiZuf0b0qx8AbPkbSYSHh6Ov78/s2fPZsaMGbRp04bZs2czdepUunbtCli3tapWrQpAlSpVePXVV/nkk08IDw9PGCHl5+d3y5yTqlWrsm3bNj755BNefPFFcufOnfDe1atX8fPzS3jdpEkTAgMDmTt3LgCnTp2iXbt2tGrVig8//DBhu8GDB7N27Vpmz55902fNnTuXxo0b39LPY6SzwtWh91/QbaL1enIPGNkyw5RbMdV/XeREVDTfLtzNlLAjZPPOwqstyvJUwxLkyGp+BJlReHg4VapUoWrVqqxfvz7ZbTZt2pSQMPr27UubNm0oUaIE06dPT+gfCQgIIFu2bJw9ezahn6JKlSrMnTuXVatWsWnTpoTjxcfHc/jwYcqW/V8VWl9fX3r06MGkSZPo2bMn+fPnZ//+/bfE0qhRI+sWRiJxcXH8/vvvCUOXDScTgfIPQJlWsGk8LPnUKrdSpjW0eNeam2IT81fMyc5cusbwpXsZu/og8ar0rFOcfs1KkzdnVrtDM2wUHh6ekAxuZ9OmTTRs2BCAunX/V9Q6PDycJk2aJLxu3749CxcuTOhwr1KlCgMHDmTChAn4+vombLdmzRrq1Klz0xUJwMCBAylbtiy7d+++KcmkZOrUqfj5+dGtW7dU72OkAy9vqNUbqnSBtf+F5UNhWH2o0hmaDIKgUi4PySQSJ4m6EsPPy/cxauV+omPieLhGMP2bl6FYkJkLktmpKlu2bKFXr1533G706NGpan/55ZcZMGBAQiJp3br1LVcPACNHjuSVV165pT04OJhRo0Zx/PjxNCUSVWXkyJF4e5s/I7bwzQ4NXrUmL676Dtb8F7b+YU1ybPSGS4cMm9+AdHYhOobRKw/w8/J9XIyOpV3VQrzSoiyl899+jL+RuYgIFy5cSLfjlS9fnu7du3Pp0qXbziWJi4sjNDQ0YVhxUndzVdG9e/c072M4QfZAa65JnRdg+dcQNhLCJ0PNXtBwAOROfv5PepLkvrl4utDQUA0LC0vXY0ZdjeHXlfsZtWI/F6JjaVGhAK+1KkuFQv7p+jmGNVeiQoUKdodhpJH5ublI1BFY9iVsHAeSBWr0tK5cAoqmvG8KRGS9qt4yAdxckdyjqCsxjFy5n19X7udidCwtKxagf/MyVC6SO+WdDcMw0lvuYHjoW2gwAFYMhQ1jrUeNHtYVSkCxdP9Ik0juUuTFa4xcsZ9x/x7k0rVYWlcqwMvNy1CpsEkghmFkAHmKw0PfQMPXrISy8TdrtFf/cPAvnOLuaWESSRodOXeFEcv2MXndYa7HxfNglUK80KQ0FQubW1iGYWRAAUWh3ddWQtkzL92TCJhEkmpx8cqbv29m+sajiECnGsE827gkJfOZTnQ7qKqZwOlGMmNfbIaTuwiE9nHKoU0iSSWvLEJMXDw96xbn6YYlKRzgl/JOhlP4+Phw9erVO1atNTKWq1evpnkpX8N9mESSBt88Wt18C84A8ufPz9GjRylSpAh+fn7mZ5KBqSpXr17l6NGjFChQwO5wDCcxiSQNzB+sjMHf3+qPOnbsGDExMTZHY6TEx8eHAgUKJPzcDM9jEonhlvz9/c0fJsPIIFxa/VdE2ojILhGJEJG3knk/q4hMdry/RkRCEr03yNG+S0RaJ9nPS0Q2isgsF5yGYRiGkYjLEomIeAE/Am2BikB3EamYZLO+wDlVLQ0MBT537FsR6AZUAtoAPzmOd0N/rHXgDcMwDBdz5RVJbSBCVfep6nVgEtAhyTYdgBtrgU4DmovVMdEBmKSq11R1PxDhOB4iEgw8CPzignMwDMMwknBlIikCHE70+oijLdltVDUWiAKCUtj3G+ANIP5OHy4iz4hImIiERUZG3uUpGIZhGEm59QqJItIOOKWqya8MlIiqjlDVUFUNzZcvnwuiMwzDyBxcmUiOAonLTwY72pLdRkS8gdzAmTvsWx9oLyIHsG6VNRORcc4I3jAMw0iey8rIOxLDbqA5VhJYBzymqtsSbfMiUEVVnxORbkAnVe0qIpWACVj9IoWBhUAZVY1LtG8T4HVVbZeKWCKBg3d5KnmB03e5b0ZiziNjMeeRcXjCOYBzzqO4qt5yS8dl80hUNVZE+gHzAC9glKpuE5EPgDBVnQmMBH4TkQjgLNZILRzbTQG2A7HAi4mTyF3Ectf3tkQkLLl6/O7GnEfGYs4j4/CEcwDXnodLJySq6hxgTpK2IYmeRwNdbrPvx8DHdzj2EmBJesRpGIZhpJ5bd7YbhmEY9jOJJO1G2B1AOjHnkbGY88g4POEcwIXnkSnXbDcMwzDSj7kiMQzDMO6JSSSGYRjGPTGJJJVSqlyckYnIKBE5JSJbE7UFisg/IrLH8W8eO2NMiYgUFZHFIrJdRLaJSH9Hu7udRzYRWSsi4Y7zeN/RXsJR8TrCUQHb1+5YUyNp5W13PA8ROSAiW0Rkk4iEOdrc6vcKQEQCRGSaiOwUkR0iUtdV52ESSSqksnJxRjYaq2pyYm8BC1W1DNYEz4yeHGOB11S1IlAHeNHxM3C387gGNFPVakB1oI2I1MGqdD3UUfn6HFYlbHeQtPK2u55HU1Wtnmjehbv9XgF8C8xV1fJANayfi2vOQ1XNI4UHUBeYl+j1IGCQ3XGl8RxCgK2JXu8CCjmeFwJ22R1jGs9nBtDSnc8DyA5sAO7HmoHs7Wi/6fctoz6wShUtBJoBswBx0/M4AORN0uZWv1dY5aT24xhA5erzMFckqZOaysXupoCqHnc8PwG4zYLajgXPagBrcMPzcNwO2gScAv4B9gLn1ap4De7z+/UNN1feDsI9z0OB+SKyXkSecbS52+9VCSAS+NVxq/EXEcmBi87DJBIDtb6uuMU4cBHJCfwOvKKqFxK/5y7noapxqlod6xt9baC8vRGlXVoqb7uBBqpaE+vW9Ysi0ijxm27ye+UN1ASGqWoN4DJJbmM58zxMIkmd1FQudjcnRaQQgOPfUzbHkyIR8cFKIuNV9Q9Hs9udxw2qeh5YjHULKMBR2BTc4/frlsrbWPfo3e08UNWjjn9PAX9iJXd3+706AhxR1TWO19OwEotLzsMkktRZB5RxjEjxxSomOdPmmO7VTKC343lvrD6HDMuxUuZIYIeqfp3oLXc7j3wiEuB47ofVz7MDK6F0dmyW4c9DVQeparCqhmD9/7BIVR/Hzc5DRHKISK4bz4FWwFbc7PdKVU8Ah0WknKOpOVaRW5ech5nZnkoi8gDWPeEblYtvW0AyoxGRiUATrLLSJ4F3genAFKAYVkn9rqp61qYQUyQiDYDlwBb+d0/+/7D6SdzpPKpiLSfthfVFboqqfiAiJbG+2QcCG4EeqnrNvkhTL/ESDu52Ho54/3S89AYmqOrHIhKEG/1eAYhIdawlx32BfcCTOH7HcPJ5mERiGIZh3BNza8swDMO4JyaRGIZhGPfEJBLDMAzjnphEYhiGYdwTk0gMwzCMe2ISiWEYhnFPTCIxjCRE5AkRKXwP+4eIyGNp3GeJiISmvOVdx1RYRKY56/hG5mYSiWHc6gngrhMJVqXlNCUSZ1PVY6raOeUtDSPtTCIxPJ6IDBCRrY7HK462kCQLfb0uIu+JSGcgFBjvWOjIz7Hw0ReOxY/Wikhpxz6jHdvfOMYlx9PPgIaO/V+9TUx+IjLJsQDRn4Bfove6Oz5rq4h8nvj4IvKlY0GsBSJS23Els09E2ic6r+UissHxqJf0fB1XXH+IyFzHgkdfpOK/4QwR6eV4/qyIjE/Nf3sjczCJxPBoIlILq1TE/VgLYj0tIjVut72qTgPCgMfVWujoquOtKFWtAvyAVSrnTt4Cljv2H3qbbZ4HrqhqBaySNbUc8RbGWhyqGdbCV/eJSEfHPjmwalpVAi4CH2HV6noY+MCxzSmgpaOa7aPAd7f5/OqO96sAj4pIUcfn/3KbW2zPAENEpCHwGvBSCv8NjEzEJBLD0zUA/lTVy6p6CfgDaHgXx5mY6N+66RBXI2AcgKpuBjY72u8DlqhqpGNdj/GObQGuA3Mdz7cAS1U1xvE8xNHuA/wsIluAqVgreiZnoapGqWo0VnG/4o5YnlLVsKQbq+pJYAhWUcbXMnrdKcO1vFPexDA8Uiw3f5HKlsL2mszzhGOISBasYnnOFKP/K44Xj7VsL6oan6h0+6tYhTmrOWKLvs2xEhdSjCN1fwuqAGe4t/4jwwOZKxLD0y0HOopIdkeZ8IcdbSeB/CISJCJZgXaJ9rkI5EpynEcT/bva8fwAjltSQHusq4Hb7Z/UMhwd8iJSGajqaF8LNBaRvCLiBXQHlqbiPG/IDRxX1XigJ1aV4XsmIrWxFn6qAbwuIiXS47iGZzCJxPBoqroBGI31B3oN8IuqbnTcEvrA0f4PsDPRbqOB4Tc62x1teURkM9Af61s/wM9Yf/TDsW53XXa0bwbiRCT8dp3twDAgp4jscMSx3hHvcaw+lsVAOLBeVdOyhsRPQG9HTOUTxZQqyfWROBLtz0AfVT2G1UcyyrFGjGGYMvKGkRLHKoChqnra7lgMIyMyVySGYRjGPTFXJIbhRCLSGms4b2L7VfVhO+IxDGcwicQwDMO4J+bWlmEYhnFPTCIxDMMw7olJJIZhGMY9MYnEMAzDuCf/D8zdonTRQBZtAAAAAElFTkSuQmCC", "text/plain": [ "