# Auto-generated. Do not edit!
'''
The ``accuracy`` module provides functions for converting between accuracy and scale parameters.
For more context, see :ref:`accuracy in the User Guide <accuracy-user-guide>`.
For convenience, all the functions of this module are also available from :py:mod:`opendp.prelude`.
We suggest importing under the conventional name ``dp``:
.. code:: python
>>> import opendp.prelude as dp
'''
from opendp._convert import *
from opendp._lib import *
from opendp.mod import *
from opendp.typing import *
__all__ = [
"accuracy_to_discrete_gaussian_scale",
"accuracy_to_discrete_laplacian_scale",
"accuracy_to_gaussian_scale",
"accuracy_to_laplacian_scale",
"discrete_gaussian_scale_to_accuracy",
"discrete_laplacian_scale_to_accuracy",
"gaussian_scale_to_accuracy",
"laplacian_scale_to_accuracy",
"summarize_polars_measurement"
]
[docs]
def accuracy_to_discrete_gaussian_scale(
accuracy,
alpha,
T: Optional[RuntimeTypeDescriptor] = None
):
r"""Convert a desired `accuracy` (tolerance) into a discrete gaussian noise scale at a statistical significance level `alpha`.
[accuracy_to_discrete_gaussian_scale in Rust documentation.](https://docs.rs/opendp/0.11.1/opendp/accuracy/fn.accuracy_to_discrete_gaussian_scale.html)
**Proof Definition:**
[(Proof Document)](https://docs.opendp.org/en/v0.11.1/proofs/rust/src/accuracy/accuracy_to_discrete_gaussian_scale.pdf)
:param accuracy: Desired accuracy. A tolerance for how far values may diverge from the input to the mechanism.
:param alpha: Statistical significance, level-`alpha`, or (1. - `alpha`)100% confidence. Must be within (0, 1].
:param T: Data type of `accuracy` and `alpha`
:type T: :py:ref:`RuntimeTypeDescriptor`
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
# Standardize type arguments.
T = RuntimeType.parse_or_infer(type_name=T, public_example=accuracy)
# Convert arguments to c types.
c_accuracy = py_to_c(accuracy, c_type=ctypes.c_void_p, type_name=T)
c_alpha = py_to_c(alpha, c_type=ctypes.c_void_p, type_name=T)
c_T = py_to_c(T, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_accuracy__accuracy_to_discrete_gaussian_scale
lib_function.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_accuracy, c_alpha, c_T), AnyObjectPtr))
return output
[docs]
def accuracy_to_discrete_laplacian_scale(
accuracy,
alpha,
T: Optional[RuntimeTypeDescriptor] = None
):
r"""Convert a desired `accuracy` (tolerance) into a discrete Laplacian noise scale at a statistical significance level `alpha`.
[accuracy_to_discrete_laplacian_scale in Rust documentation.](https://docs.rs/opendp/0.11.1/opendp/accuracy/fn.accuracy_to_discrete_laplacian_scale.html)
**Proof Definition:**
[(Proof Document)](https://docs.opendp.org/en/v0.11.1/proofs/rust/src/accuracy/accuracy_to_discrete_laplacian_scale.pdf)
:param accuracy: Desired accuracy. A tolerance for how far values may diverge from the input to the mechanism.
:param alpha: Statistical significance, level-`alpha`, or (1. - `alpha`)100% confidence. Must be within (0, 1].
:param T: Data type of `accuracy` and `alpha`
:type T: :py:ref:`RuntimeTypeDescriptor`
:return: Discrete laplacian noise scale that meets the `accuracy` requirement at a given level-`alpha`.
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
# Standardize type arguments.
T = RuntimeType.parse_or_infer(type_name=T, public_example=accuracy)
# Convert arguments to c types.
c_accuracy = py_to_c(accuracy, c_type=ctypes.c_void_p, type_name=T)
c_alpha = py_to_c(alpha, c_type=ctypes.c_void_p, type_name=T)
c_T = py_to_c(T, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_accuracy__accuracy_to_discrete_laplacian_scale
lib_function.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_accuracy, c_alpha, c_T), AnyObjectPtr))
return output
[docs]
def accuracy_to_gaussian_scale(
accuracy,
alpha,
T: Optional[RuntimeTypeDescriptor] = None
):
r"""Convert a desired `accuracy` (tolerance) into a gaussian noise scale at a statistical significance level `alpha`.
[accuracy_to_gaussian_scale in Rust documentation.](https://docs.rs/opendp/0.11.1/opendp/accuracy/fn.accuracy_to_gaussian_scale.html)
:param accuracy: Desired accuracy. A tolerance for how far values may diverge from the input to the mechanism.
:param alpha: Statistical significance, level-`alpha`, or (1. - `alpha`)100% confidence. Must be within (0, 1].
:param T: Data type of `accuracy` and `alpha`
:type T: :py:ref:`RuntimeTypeDescriptor`
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
# Standardize type arguments.
T = RuntimeType.parse_or_infer(type_name=T, public_example=accuracy)
# Convert arguments to c types.
c_accuracy = py_to_c(accuracy, c_type=ctypes.c_void_p, type_name=T)
c_alpha = py_to_c(alpha, c_type=ctypes.c_void_p, type_name=T)
c_T = py_to_c(T, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_accuracy__accuracy_to_gaussian_scale
lib_function.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_accuracy, c_alpha, c_T), AnyObjectPtr))
return output
[docs]
def accuracy_to_laplacian_scale(
accuracy,
alpha,
T: Optional[RuntimeTypeDescriptor] = None
):
r"""Convert a desired `accuracy` (tolerance) into a Laplacian noise scale at a statistical significance level `alpha`.
[accuracy_to_laplacian_scale in Rust documentation.](https://docs.rs/opendp/0.11.1/opendp/accuracy/fn.accuracy_to_laplacian_scale.html)
:param accuracy: Desired accuracy. A tolerance for how far values may diverge from the input to the mechanism.
:param alpha: Statistical significance, level-`alpha`, or (1. - `alpha`)100% confidence. Must be within (0, 1].
:param T: Data type of `accuracy` and `alpha`
:type T: :py:ref:`RuntimeTypeDescriptor`
:return: Laplacian noise scale that meets the `accuracy` requirement at a given level-`alpha`.
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
# Standardize type arguments.
T = RuntimeType.parse_or_infer(type_name=T, public_example=accuracy)
# Convert arguments to c types.
c_accuracy = py_to_c(accuracy, c_type=ctypes.c_void_p, type_name=T)
c_alpha = py_to_c(alpha, c_type=ctypes.c_void_p, type_name=T)
c_T = py_to_c(T, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_accuracy__accuracy_to_laplacian_scale
lib_function.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_accuracy, c_alpha, c_T), AnyObjectPtr))
return output
[docs]
def discrete_gaussian_scale_to_accuracy(
scale,
alpha,
T: Optional[RuntimeTypeDescriptor] = None
):
r"""Convert a discrete gaussian scale into an accuracy estimate (tolerance) at a statistical significance level `alpha`.
[discrete_gaussian_scale_to_accuracy in Rust documentation.](https://docs.rs/opendp/0.11.1/opendp/accuracy/fn.discrete_gaussian_scale_to_accuracy.html)
**Proof Definition:**
[(Proof Document)](https://docs.opendp.org/en/v0.11.1/proofs/rust/src/accuracy/discrete_gaussian_scale_to_accuracy.pdf)
:param scale: Gaussian noise scale.
:param alpha: Statistical significance, level-`alpha`, or (1. - `alpha`)100% confidence. Must be within (0, 1].
:param T: Data type of `scale` and `alpha`
:type T: :py:ref:`RuntimeTypeDescriptor`
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
# Standardize type arguments.
T = RuntimeType.parse_or_infer(type_name=T, public_example=scale)
# Convert arguments to c types.
c_scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=T)
c_alpha = py_to_c(alpha, c_type=ctypes.c_void_p, type_name=T)
c_T = py_to_c(T, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_accuracy__discrete_gaussian_scale_to_accuracy
lib_function.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_scale, c_alpha, c_T), AnyObjectPtr))
return output
[docs]
def discrete_laplacian_scale_to_accuracy(
scale,
alpha,
T: Optional[RuntimeTypeDescriptor] = None
):
r"""Convert a discrete Laplacian scale into an accuracy estimate (tolerance) at a statistical significance level `alpha`.
$\alpha = P[Y \ge accuracy]$, where $Y = | X - z |$, and $X \sim \mathcal{L}_{Z}(0, scale)$.
That is, $X$ is a discrete Laplace random variable and $Y$ is the distribution of the errors.
This function returns a float accuracy.
You can take the floor without affecting the coverage probability.
[discrete_laplacian_scale_to_accuracy in Rust documentation.](https://docs.rs/opendp/0.11.1/opendp/accuracy/fn.discrete_laplacian_scale_to_accuracy.html)
**Proof Definition:**
[(Proof Document)](https://docs.opendp.org/en/v0.11.1/proofs/rust/src/accuracy/discrete_laplacian_scale_to_accuracy.pdf)
:param scale: Discrete Laplacian noise scale.
:param alpha: Statistical significance, level-`alpha`, or (1. - `alpha`)100% confidence. Must be within (0, 1].
:param T: Data type of `scale` and `alpha`
:type T: :py:ref:`RuntimeTypeDescriptor`
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
# Standardize type arguments.
T = RuntimeType.parse_or_infer(type_name=T, public_example=scale)
# Convert arguments to c types.
c_scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=T)
c_alpha = py_to_c(alpha, c_type=ctypes.c_void_p, type_name=T)
c_T = py_to_c(T, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_accuracy__discrete_laplacian_scale_to_accuracy
lib_function.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_scale, c_alpha, c_T), AnyObjectPtr))
return output
[docs]
def gaussian_scale_to_accuracy(
scale,
alpha,
T: Optional[RuntimeTypeDescriptor] = None
):
r"""Convert a gaussian scale into an accuracy estimate (tolerance) at a statistical significance level `alpha`.
[gaussian_scale_to_accuracy in Rust documentation.](https://docs.rs/opendp/0.11.1/opendp/accuracy/fn.gaussian_scale_to_accuracy.html)
:param scale: Gaussian noise scale.
:param alpha: Statistical significance, level-`alpha`, or (1. - `alpha`)100% confidence. Must be within (0, 1].
:param T: Data type of `scale` and `alpha`
:type T: :py:ref:`RuntimeTypeDescriptor`
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
# Standardize type arguments.
T = RuntimeType.parse_or_infer(type_name=T, public_example=scale)
# Convert arguments to c types.
c_scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=T)
c_alpha = py_to_c(alpha, c_type=ctypes.c_void_p, type_name=T)
c_T = py_to_c(T, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_accuracy__gaussian_scale_to_accuracy
lib_function.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_scale, c_alpha, c_T), AnyObjectPtr))
return output
[docs]
def laplacian_scale_to_accuracy(
scale,
alpha,
T: Optional[RuntimeTypeDescriptor] = None
):
r"""Convert a Laplacian scale into an accuracy estimate (tolerance) at a statistical significance level `alpha`.
[laplacian_scale_to_accuracy in Rust documentation.](https://docs.rs/opendp/0.11.1/opendp/accuracy/fn.laplacian_scale_to_accuracy.html)
:param scale: Laplacian noise scale.
:param alpha: Statistical significance, level-`alpha`, or (1. - `alpha`)100% confidence. Must be within (0, 1].
:param T: Data type of `scale` and `alpha`
:type T: :py:ref:`RuntimeTypeDescriptor`
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
# Standardize type arguments.
T = RuntimeType.parse_or_infer(type_name=T, public_example=scale)
# Convert arguments to c types.
c_scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=T)
c_alpha = py_to_c(alpha, c_type=ctypes.c_void_p, type_name=T)
c_T = py_to_c(T, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_accuracy__laplacian_scale_to_accuracy
lib_function.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_scale, c_alpha, c_T), AnyObjectPtr))
return output
[docs]
def summarize_polars_measurement(
measurement: Measurement,
alpha = None
):
r"""Summarize the statistics to be released from a measurement that returns a OnceFrame.
If a threshold is configured for censoring small/sensitive partitions,
a threshold column will be included,
containing the cutoff for the respective count query being thresholded.
:param measurement: computation from which you want to read noise scale parameters from
:type measurement: Measurement
:param alpha: optional statistical significance to use to compute accuracy estimates
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
:example:
First, create a measurement with the Polars API:
>>> import opendp.prelude as dp
>>> import polars as pl
>>> dp.enable_features("contrib")
...
>>> lf = pl.LazyFrame(schema={"A": pl.Int32, "B": pl.String})
>>> lf_domain = dp.lazyframe_domain([
... dp.series_domain("A", dp.atom_domain(T="i32")),
... dp.series_domain("B", dp.atom_domain(T=str))
... ])
>>> lf_domain = dp.with_margin(lf_domain, by=[], max_partition_length=1000)
>>> meas = dp.m.make_private_lazyframe(
... lf_domain,
... dp.symmetric_distance(),
... dp.max_divergence(T=float),
... lf.select([pl.len().dp.noise(), pl.col("A").dp.sum((0, 1))]),
... global_scale=1.0
... )
This function extracts utility information about each aggregate in the resulting data frame:
>>> dp.summarize_polars_measurement(meas)
shape: (2, 4)
┌────────┬───────────┬─────────────────┬───────┐
│ column ┆ aggregate ┆ distribution ┆ scale │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ f64 │
╞════════╪═══════════╪═════════════════╪═══════╡
│ len ┆ Len ┆ Integer Laplace ┆ 1.0 │
│ A ┆ Sum ┆ Integer Laplace ┆ 1.0 │
└────────┴───────────┴─────────────────┴───────┘
If you pass an alpha argument, then you also get accuracy estimates:
>>> dp.summarize_polars_measurement(meas, alpha=.05)
shape: (2, 5)
┌────────┬───────────┬─────────────────┬───────┬──────────┐
│ column ┆ aggregate ┆ distribution ┆ scale ┆ accuracy │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ f64 ┆ f64 │
╞════════╪═══════════╪═════════════════╪═══════╪══════════╡
│ len ┆ Len ┆ Integer Laplace ┆ 1.0 ┆ 3.375618 │
│ A ┆ Sum ┆ Integer Laplace ┆ 1.0 ┆ 3.375618 │
└────────┴───────────┴─────────────────┴───────┴──────────┘
"""
assert_features("contrib")
# No type arguments to standardize.
# Convert arguments to c types.
c_measurement = py_to_c(measurement, c_type=Measurement, type_name=AnyMeasurement)
c_alpha = py_to_c(alpha, c_type=AnyObjectPtr, type_name=RuntimeType(origin='Option', args=[f64]))
# Call library function.
lib_function = lib.opendp_accuracy__summarize_polars_measurement
lib_function.argtypes = [Measurement, AnyObjectPtr]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_measurement, c_alpha), AnyObjectPtr))
return output