Make a Measurement that adds noise from the Laplace(scale
) distribution to the input.
Arguments
- input_domain
Domain of the data type to be privatized.
- input_metric
Metric of the data type to be privatized.
- scale
Noise scale parameter for the Laplace distribution.
scale
== standard_deviation / sqrt(2).- k
The noise granularity in terms of 2^k, only valid for domains over floats.
- .QO
Data type of the output distance and scale.
f32
orf64
.
Details
Valid inputs for input_domain
and input_metric
are:
input_domain | input type | input_metric |
atom_domain(T) (default) | T | absolute_distance(T) |
vector_domain(atom_domain(T)) | Vec<T> | l1_distance(T) |
Internally, all sampling is done using the discrete Laplace distribution.
make_laplace in Rust documentation.
Citations:
Supporting Elements:
Input Domain:
D
Output Type:
D::Carrier
Input Metric:
D::InputMetric
Output Measure:
MaxDivergence<QO>