Make a Measurement that adds noise from the Laplace(scale
) distribution to the input.
Arguments
- input_domain
Domain of the data type to be privatized.
- input_metric
Metric of the data type to be privatized.
- scale
Noise scale parameter for the Laplace distribution.
scale
== standard_deviation / sqrt(2).- k
The noise granularity in terms of 2^k, only valid for domains over floats.
- .MO
Measure used to quantify privacy loss. Valid values are just
MaxDivergence
Details
Valid inputs for input_domain
and input_metric
are:
input_domain | input type | input_metric |
atom_domain(T) (default) | T | absolute_distance(T) |
vector_domain(atom_domain(T)) | Vec<T> | l1_distance(T) |
Internally, all sampling is done using the discrete Laplace distribution.
Required features: contrib
make_laplace in Rust documentation.
Citations:
Supporting Elements:
Input Domain:
DI
Output Type:
MI
Input Metric:
MO
Output Measure:
DI::Carrier
Proof Definition: