Package index
Accuracy
The accuracy module provides functions for converting between accuracy and scale parameters.
-
accuracy_to_discrete_gaussian_scale() - Convert a desired
accuracy(tolerance) into a discrete gaussian noise scale at a statistical significance levelalpha.
-
accuracy_to_discrete_laplacian_scale() - Convert a desired
accuracy(tolerance) into a discrete Laplacian noise scale at a statistical significance levelalpha.
-
accuracy_to_gaussian_scale() - Convert a desired
accuracy(tolerance) into a gaussian noise scale at a statistical significance levelalpha.
-
accuracy_to_laplacian_scale() - Convert a desired
accuracy(tolerance) into a Laplacian noise scale at a statistical significance levelalpha.
-
discrete_gaussian_scale_to_accuracy() - Convert a discrete gaussian scale into an accuracy estimate (tolerance) at a statistical significance level
alpha.
-
discrete_laplacian_scale_to_accuracy() - Convert a discrete Laplacian scale into an accuracy estimate (tolerance) at a statistical significance level
alpha.
-
gaussian_scale_to_accuracy() - Convert a gaussian scale into an accuracy estimate (tolerance) at a statistical significance level
alpha.
-
laplacian_scale_to_accuracy() - Convert a Laplacian scale into an accuracy estimate (tolerance) at a statistical significance level
alpha.
Combinators
The combinators module provides functions for combining transformations and measurements.
-
make_adaptive_composition() - adaptive composition constructor
-
make_approximate() - approximate constructor
-
make_basic_composition() - basic composition constructor
-
make_chain_mt() - chain mt constructor
-
make_chain_pm() - chain pm constructor
-
make_chain_tt() - chain tt constructor
-
make_composition() - composition constructor
-
make_fix_delta() - fix delta constructor
-
make_fixed_approxDP_to_approxDP() - fixed approxDP to approxDP constructor
-
make_fully_adaptive_composition() - fully adaptive composition constructor
-
make_population_amplification() - population amplification constructor
-
make_privacy_filter() - privacy filter constructor
-
make_pureDP_to_zCDP() - pureDP to zCDP constructor
-
make_select_private_candidate() - select private candidate constructor
-
make_sequential_composition() - sequential composition constructor
-
make_zCDP_to_approxDP() - zCDP to approxDP constructor
-
then_adaptive_composition() - partial adaptive composition constructor
-
then_approximate() - partial approximate constructor
-
then_basic_composition() - partial basic composition constructor
-
then_chain_mt() - partial chain mt constructor
-
then_chain_pm() - partial chain pm constructor
-
then_chain_tt() - partial chain tt constructor
-
then_composition() - partial composition constructor
-
then_fix_delta() - partial fix delta constructor
-
then_fixed_approxDP_to_approxDP() - partial fixed approxDP to approxDP constructor
-
then_fully_adaptive_composition() - partial fully adaptive composition constructor
-
then_population_amplification() - partial population amplification constructor
-
then_privacy_filter() - partial privacy filter constructor
-
then_pureDP_to_zCDP() - partial pureDP to zCDP constructor
-
then_select_private_candidate() - partial select private candidate constructor
-
then_sequential_composition() - partial sequential composition constructor
-
then_zCDP_to_approxDP() - partial zCDP to approxDP constructor
Core
The core module provides functions for accessing the fields of transformations and measurements.
-
function_eval() - Eval the
functionwitharg.
-
measurement_check() - Check the privacy relation of the
measurementat the givend_in,d_out
-
measurement_function() - Get the function from a measurement.
-
measurement_input_carrier_type() - Get the input (carrier) data type of
this.
-
measurement_input_distance_type() - Get the input distance type of
measurement.
-
measurement_input_domain() - Get the input domain from a
measurement.
-
measurement_input_metric() - Get the input domain from a
measurement.
-
measurement_invoke() - Invoke the
measurementwitharg. Returns a differentially private release.
-
measurement_map() - Use the
measurementto map a givend_intod_out.
-
measurement_output_distance_type() - Get the output distance type of
measurement.
-
measurement_output_measure() - Get the output domain from a
measurement.
-
odometer_input_carrier_type() - Get the input (carrier) data type of
this.
-
odometer_input_domain() - Get the input domain from a
odometer.
-
odometer_input_metric() - Get the input domain from a
odometer.
-
odometer_invoke() - Invoke the
odometerwitharg. Returns a differentially private release.
-
odometer_output_measure() - Get the output domain from a
odometer.
-
odometer_queryable_invoke() - Eval the odometer
queryablewith an invokequery.
-
odometer_queryable_invoke_type() - Get the invoke query type of an odometer
queryable.
-
odometer_queryable_privacy_loss() - Retrieve the privacy loss of an odometer
queryable.
-
odometer_queryable_privacy_loss_type() - Get the map query type of an odometer
queryable.
-
queryable_eval() - Eval the
queryablewithquery. Returns a differentially private release.
-
queryable_query_type() - Get the query type of
queryable.
-
transformation_check() - Check the privacy relation of the
measurementat the givend_in,d_out
-
transformation_function() - Get the function from a transformation.
-
transformation_input_carrier_type() - Get the input (carrier) data type of
this.
-
transformation_input_distance_type() - Get the input distance type of
transformation.
-
transformation_input_domain() - Get the input domain from a
transformation.
-
transformation_input_metric() - Get the input domain from a
transformation.
-
transformation_invoke() - Invoke the
transformationwitharg. Returns a differentially private release.
-
transformation_map() - Use the
transformationto map a givend_intod_out.
-
transformation_output_distance_type() - Get the output distance type of
transformation.
-
transformation_output_domain() - Get the output domain from a
transformation.
-
transformation_output_metric() - Get the output domain from a
transformation.
-
atom_domain() - Construct an instance of
AtomDomain.
-
atom_domain_get_bounds_closed() - Retrieve bounds from an AtomDomain
-
atom_domain_nan() - Retrieve whether members of AtomDomain
may be NaN.
-
bitvector_domain() - Construct an instance of
BitVectorDomain.
-
domain_carrier_type() - Get the carrier type of a
domain.
-
domain_debug() - Debug a
domain.
-
domain_equal() - Check whether two domains are equal.
-
domain_type() - Get the type of a
domain.
-
map_domain() - Construct an instance of
MapDomain.
-
member() - Check membership in a
domain.
-
option_domain() - Construct an instance of
OptionDomain.
-
option_domain_get_element_domain() - Retrieve the element domain of the option domain.
-
vector_domain() - Construct an instance of
VectorDomain.
-
vector_domain_get_element_domain() - Retrieve the element domain of the vector domain.
-
vector_domain_get_size() - Retrieve the size of vectors in the vector domain.
Measurements
The measurements module provides functions that apply calibrated noise to data to ensure differential privacy.
-
make_alp_queryable() - alp queryable constructor
-
make_canonical_noise() - canonical noise constructor
-
make_gaussian() - gaussian constructor
-
make_gaussian_threshold() - gaussian threshold constructor
-
make_geometric() - geometric constructor
-
make_laplace() - laplace constructor
-
make_laplace_threshold() - laplace threshold constructor
-
make_noise() - noise constructor
-
make_noise_threshold() - noise threshold constructor
-
make_noisy_max() - noisy max constructor
-
make_noisy_top_k() - noisy top k constructor
-
make_private_quantile() - private quantile constructor
-
make_randomized_response() - randomized response constructor
-
make_randomized_response_bitvec() - randomized response bitvec constructor
-
make_randomized_response_bool() - randomized response bool constructor
-
make_report_noisy_max_gumbel() - report noisy max gumbel constructor
-
then_alp_queryable() - partial alp queryable constructor
-
then_canonical_noise() - partial canonical noise constructor
-
then_gaussian() - partial gaussian constructor
-
then_gaussian_threshold() - partial gaussian threshold constructor
-
then_geometric() - partial geometric constructor
-
then_laplace() - partial laplace constructor
-
then_laplace_threshold() - partial laplace threshold constructor
-
then_noise() - partial noise constructor
-
then_noise_threshold() - partial noise threshold constructor
-
then_noisy_max() - partial noisy max constructor
-
then_noisy_top_k() - partial noisy top k constructor
-
then_private_quantile() - partial private quantile constructor
-
then_randomized_response() - partial randomized response constructor
-
then_randomized_response_bitvec() - partial randomized response bitvec constructor
-
then_randomized_response_bool() - partial randomized response bool constructor
-
then_report_noisy_max_gumbel() - partial report noisy max gumbel constructor
Measures
The measures modules provides functions that measure the distance between probability distributions.
-
approximate() - Privacy measure used to define \(\delta\)-approximate PM-differential privacy.
-
approximate_divergence_get_inner_measure() - Retrieve the inner privacy measure of an approximate privacy measure.
-
fixed_smoothed_max_divergence() - Privacy measure used to define \((\epsilon, \delta)\)-approximate differential privacy.
-
max_divergence() - Privacy measure used to define \(\epsilon\)-pure differential privacy.
-
measure_debug() - Debug a
measure.
-
measure_distance_type() - Get the distance type of a
measure.
-
measure_equal() - Check whether two measures are equal.
-
measure_type() - Get the type of a
measure.
-
renyi_divergence() - Privacy measure used to define \(\epsilon(\alpha)\)-Rényi differential privacy.
-
smoothed_max_divergence() - Privacy measure used to define \(\epsilon(\delta)\)-approximate differential privacy.
-
user_divergence() - Privacy measure with meaning defined by an OpenDP Library user (you).
-
zero_concentrated_divergence() - Privacy measure used to define \(\rho\)-zero concentrated differential privacy.
Metrics
The metrics module provides functions that measure the distance between two elements of a domain.
-
absolute_distance() - Construct an instance of the
AbsoluteDistancemetric.
-
change_one_distance() - Construct an instance of the
ChangeOneDistancemetric.
-
discrete_distance() - Construct an instance of the
DiscreteDistancemetric.
-
hamming_distance() - Construct an instance of the
HammingDistancemetric.
-
insert_delete_distance() - Construct an instance of the
InsertDeleteDistancemetric.
-
l01inf_distance() - Construct an instance of the
L01InfDistancemetric.
-
l02inf_distance() - Construct an instance of the
L02InfDistancemetric.
-
l1_distance() - Construct an instance of the
L1Distancemetric.
-
l2_distance() - Construct an instance of the
L2Distancemetric.
-
linf_distance() - Construct an instance of the
LInfDistancemetric.
-
metric_debug() - Debug a
metric.
-
metric_distance_type() - Get the distance type of a
metric.
-
metric_equal() - Check whether two metrics are equal.
-
metric_type() - Get the type of a
metric.
-
symmetric_distance() - Construct an instance of the
SymmetricDistancemetric.
Mod
The mod module provides the classes which implement the OpenDP Programming Framework, as well as utilities for enabling features and finding parameter values.
-
binary_search() - Find the closest passing value to the decision boundary of
predicate
-
binary_search_chain() - Find the highest-utility (
d_in,d_out)-close Transformation or Measurement.
-
binary_search_param() - Solve for the ideal constructor argument to
make_chain
-
disable_features() - Disable features in the opendp package.
-
enable_features() - Enable features for the opendp package.
-
hashitems() - extract heterogeneously typed keys and values from a hashtab
-
new_domain() - new domain
-
new_function() - new function
-
new_hashtab() - create an instance of a hashtab from keys and values
-
new_measure() - new measure
-
new_measurement() - new measurement
-
new_metric() - new metric
-
new_odometer() - new odometer
-
new_odometer_queryable() - new odometer queryable
-
new_privacy_profile() - new privacy profile
-
new_queryable() - new queryable
-
new_transformation() - new transformation
-
to_str(<default>) - Convert a format-able value to a string representation
-
to_str(<hashtab>) - Convert hashtab to a string representation
Transformations
The transformations module provides functions that deterministically transform datasets.
-
choose_branching_factor() - Returns an approximation to the ideal
branching_factorfor a dataset of a given size, that minimizes error in cdf and quantile estimates based on b-ary trees.
-
make_b_ary_tree() - b ary tree constructor
-
make_bounded_float_checked_sum() - bounded float checked sum constructor
-
make_bounded_float_ordered_sum() - bounded float ordered sum constructor
-
make_bounded_int_monotonic_sum() - bounded int monotonic sum constructor
-
make_bounded_int_ordered_sum() - bounded int ordered sum constructor
-
make_bounded_int_split_sum() - bounded int split sum constructor
-
make_cast() - cast constructor
-
make_cast_default() - cast default constructor
-
make_cast_inherent() - cast inherent constructor
-
make_cdf() - cdf constructor
-
make_clamp() - clamp constructor
-
make_consistent_b_ary_tree() - consistent b ary tree constructor
-
make_count() - count constructor
-
make_count_by() - count by constructor
-
make_count_by_categories() - count by categories constructor
-
make_count_distinct() - count distinct constructor
-
make_create_dataframe() - create dataframe constructor
-
make_df_cast_default() - df cast default constructor
-
make_df_is_equal() - df is equal constructor
-
make_drop_null() - drop null constructor
-
make_find() - find constructor
-
make_find_bin() - find bin constructor
-
make_identity() - identity constructor
-
make_impute_constant() - impute constant constructor
-
make_impute_uniform_float() - impute uniform float constructor
-
make_index() - index constructor
-
make_is_equal() - is equal constructor
-
make_is_null() - is null constructor
-
make_lipschitz_float_mul() - lipschitz float mul constructor
-
make_mean() - mean constructor
-
make_metric_bounded() - metric bounded constructor
-
make_metric_unbounded() - metric unbounded constructor
-
make_ordered_random() - ordered random constructor
-
make_quantile_score_candidates() - quantile score candidates constructor
-
make_quantiles_from_counts() - quantiles from counts constructor
-
make_resize() - resize constructor
-
make_select_column() - select column constructor
-
make_sized_bounded_float_checked_sum() - sized bounded float checked sum constructor
-
make_sized_bounded_float_ordered_sum() - sized bounded float ordered sum constructor
-
make_sized_bounded_int_checked_sum() - sized bounded int checked sum constructor
-
make_sized_bounded_int_monotonic_sum() - sized bounded int monotonic sum constructor
-
make_sized_bounded_int_ordered_sum() - sized bounded int ordered sum constructor
-
make_sized_bounded_int_split_sum() - sized bounded int split sum constructor
-
make_split_dataframe() - split dataframe constructor
-
make_split_lines() - split lines constructor
-
make_split_records() - split records constructor
-
make_subset_by() - subset by constructor
-
make_sum() - sum constructor
-
make_sum_of_squared_deviations() - sum of squared deviations constructor
-
make_unordered() - unordered constructor
-
make_variance() - variance constructor
-
then_b_ary_tree() - partial b ary tree constructor
-
then_bounded_float_checked_sum() - partial bounded float checked sum constructor
-
then_bounded_float_ordered_sum() - partial bounded float ordered sum constructor
-
then_bounded_int_monotonic_sum() - partial bounded int monotonic sum constructor
-
then_bounded_int_ordered_sum() - partial bounded int ordered sum constructor
-
then_bounded_int_split_sum() - partial bounded int split sum constructor
-
then_cast() - partial cast constructor
-
then_cast_default() - partial cast default constructor
-
then_cast_inherent() - partial cast inherent constructor
-
then_cdf() - partial cdf constructor
-
then_clamp() - partial clamp constructor
-
then_consistent_b_ary_tree() - partial consistent b ary tree constructor
-
then_count() - partial count constructor
-
then_count_by() - partial count by constructor
-
then_count_by_categories() - partial count by categories constructor
-
then_count_distinct() - partial count distinct constructor
-
then_create_dataframe() - partial create dataframe constructor
-
then_df_cast_default() - partial df cast default constructor
-
then_df_is_equal() - partial df is equal constructor
-
then_drop_null() - partial drop null constructor
-
then_find() - partial find constructor
-
then_find_bin() - partial find bin constructor
-
then_identity() - partial identity constructor
-
then_impute_constant() - partial impute constant constructor
-
then_impute_uniform_float() - partial impute uniform float constructor
-
then_index() - partial index constructor
-
then_is_equal() - partial is equal constructor
-
then_is_null() - partial is null constructor
-
then_lipschitz_float_mul() - partial lipschitz float mul constructor
-
then_mean() - partial mean constructor
-
then_metric_bounded() - partial metric bounded constructor
-
then_metric_unbounded() - partial metric unbounded constructor
-
then_ordered_random() - partial ordered random constructor
-
then_quantile_score_candidates() - partial quantile score candidates constructor
-
then_quantiles_from_counts() - partial quantiles from counts constructor
-
then_resize() - partial resize constructor
-
then_select_column() - partial select column constructor
-
then_sized_bounded_float_checked_sum() - partial sized bounded float checked sum constructor
-
then_sized_bounded_float_ordered_sum() - partial sized bounded float ordered sum constructor
-
then_sized_bounded_int_checked_sum() - partial sized bounded int checked sum constructor
-
then_sized_bounded_int_monotonic_sum() - partial sized bounded int monotonic sum constructor
-
then_sized_bounded_int_ordered_sum() - partial sized bounded int ordered sum constructor
-
then_sized_bounded_int_split_sum() - partial sized bounded int split sum constructor
-
then_split_dataframe() - partial split dataframe constructor
-
then_split_lines() - partial split lines constructor
-
then_split_records() - partial split records constructor
-
then_subset_by() - partial subset by constructor
-
then_sum() - partial sum constructor
-
then_sum_of_squared_deviations() - partial sum of squared deviations constructor
-
then_unordered() - partial unordered constructor
-
then_variance() - partial variance constructor
Typing
The typing module provides utilities that bridge between R and Rust types. OpenDP relies on precise descriptions of data types to make its security guarantees: These are more natural in Rust with its fine-grained type system, but they may feel out of place in R. These utilities try to fill that gap.
-
BitVector - type signature for a BitVector
-
String - type signature for a string
-
bool - type signature for a boolean
-
f32 - type signature for a 32-bit floating point number
-
f64 - type signature for a 64-bit floating point number
-
i128 - type signature for a 128-bit signed integer
-
i16 - type signature for a 16-bit signed integer
-
i32 - type signature for a 32-bit signed integer
-
i64 - type signature for a 64-bit signed integer
-
i8 - type signature for an 8-bit signed integer
-
u128 - type signature for a 128-bit unsigned integer
-
u16 - type signature for a 16-bit unsigned integer
-
u32 - type signature for a 32-bit unsigned integer
-
u64 - type signature for a 64-bit unsigned integer
-
u8 - type signature for an 8-bit unsigned integer
-
usize - type signature for a pointer-sized unsigned integer
Other
This should be empty if correctly configured. Please file an issue if any functions are listed here.