Skip to contents

Make a Transformation that computes the sum of squared deviations of bounded data.

Usage

make_sum_of_squared_deviations(input_domain, input_metric, .S = "Pairwise<.T>")

Arguments

input_domain

undocumented

input_metric

undocumented

.S

Summation algorithm to use on data type T. One of Sequential<T> or Pairwise<T>.

Value

Transformation

Details

This uses a restricted-sensitivity proof that takes advantage of known dataset size. Use make_clamp to bound data and make_resize to establish dataset size.

S (summation algorithm)input type
Sequential<S::Item>Vec<S::Item>
Pairwise<S::Item>Vec<S::Item>

S::Item is the type of all of the following: each bound, each element in the input data, the output data, and the output sensitivity.

For example, to construct a transformation that computes the SSD of f32 half-precision floats, set S to Pairwise<f32>.

make_sum_of_squared_deviations in Rust documentation.

Citations:

Supporting Elements:

  • Input Domain: VectorDomain<AtomDomain<S::Item>>

  • Output Domain: AtomDomain<S::Item>

  • Input Metric: SymmetricDistance

  • Output Metric: AbsoluteDistance<S::Item>