This documentation is for an old version of OpenDP.

The current release of OpenDP is v0.11.1.

Source code for opendp.typing

import sys
import typing
from collections.abc import Hashable
from typing import Union, Any, Type, List

from opendp.mod import UnknownTypeException
from opendp._lib import ATOM_EQUIVALENCE_CLASSES

if sys.version_info >= (3, 7):
    from typing import _GenericAlias
else:
    from typing import GenericMeta as _GenericAlias

ELEMENTARY_TYPES = {int: 'i32', float: 'f64', str: 'String', bool: 'bool'}

# all ways of providing type information
RuntimeTypeDescriptor = Union[
    "RuntimeType",  # as the normalized type -- SubstituteDistance; RuntimeType.parse("i32")
    _GenericAlias,  # a python type hint from the std typing module -- List[int]
    str,  # plaintext string in terms of rust types -- "Vec<i32>"
    Type[Union[typing.List, typing.Tuple, int, float, str, bool]],  # using the python type class itself -- int, float
    tuple,  # shorthand for tuples -- (float, "f64"); (SubstituteDistance, List[int])
]


[docs] class RuntimeType(object): """Utility for validating, manipulating, inferring and parsing/normalizing type information. """ def __init__(self, origin, args=None): if not isinstance(origin, str): raise ValueError("origin must be a string", origin) self.origin = origin self.args = args def __eq__(self, other): if isinstance(other, str): other = RuntimeType.parse(other) return self.origin == other.origin and self.args == other.args def __str__(self): result = self.origin or '' if result == 'Tuple': return f'({", ".join(map(str, self.args))})' if self.args: result += f'<{", ".join(map(str, self.args))}>' return result
[docs] @classmethod def parse(cls, type_name: RuntimeTypeDescriptor, generics: List[str] = None) -> Union["RuntimeType", str]: """Parse type descriptor into a normalized rust type. Type descriptor may be expressed as: - python type hints from std typing module - plaintext rust type strings for setting specific bit depth - python type class - one of {int, str, float, bool} - tuple of type information - for example: (float, float) :param type_name: type specifier :param generics: For internal use. List of type names to consider generic when parsing. :type: List[str] :return: Normalized type. If the type has subtypes, returns a RuntimeType, else a str. :rtype: Union["RuntimeType", str] :raises UnknownTypeError: if `type_name` fails to parse :examples: >>> from opendp.typing import RuntimeType, L1Distance >>> assert RuntimeType.parse(int) == "i32" >>> assert RuntimeType.parse("i32") == "i32" >>> assert RuntimeType.parse(L1Distance[int]) == "L1Distance<i32>" >>> assert RuntimeType.parse(L1Distance["f32"]) == "L1Distance<f32>" >>> from typing import List >>> assert RuntimeType.parse(List[int]) == "Vec<int>" """ generics = generics or [] if isinstance(type_name, RuntimeType): return type_name # parse type hints from the typing module if isinstance(type_name, _GenericAlias): if sys.version_info < (3, 8): raise NotImplementedError("parsing type hint annotations are only supported in python 3.8 and above") origin = typing.get_origin(type_name) args = [RuntimeType.parse(v, generics=generics) for v in typing.get_args(type_name)] or None if origin == tuple: origin = 'Tuple' if origin == list: origin = 'Vec' return RuntimeType(RuntimeType.parse(origin, generics=generics), args) # parse a tuple of types-- (int, "f64"); (List[int], (int, bool)) if isinstance(type_name, tuple): return RuntimeType('Tuple', list(cls.parse(v, generics=generics) for v in type_name)) # parse a string-- "Vec<f32>", if isinstance(type_name, str): type_name = type_name.strip() if type_name in generics: return GenericType(type_name) if type_name.startswith('(') and type_name.endswith(')'): return RuntimeType('Tuple', cls._parse_args(type_name[1:-1], generics=generics)) start, end = type_name.find('<'), type_name.rfind('>') # attempt to upgrade strings to the metric/measure instance origin = type_name[:start] if 0 < start else type_name closeness = { 'SubstituteDistance': SubstituteDistance, 'SymmetricDistance': SymmetricDistance, 'AbsoluteDistance': AbsoluteDistance, 'L1Distance': L1Distance, 'L2Distance': L2Distance, 'MaxDivergence': MaxDivergence, 'SmoothedMaxDivergence': SmoothedMaxDivergence }.get(origin) if closeness is not None: if isinstance(closeness, (SensitivityMetric, PrivacyMeasure)): return closeness[cls._parse_args(type_name[start + 1: end], generics=generics)[0]] return closeness domain = { 'AllDomain': AllDomain, 'IntervalDomain': IntervalDomain, 'VectorDomain': VectorDomain, 'OptionNullDomain': OptionNullDomain, 'InherentNullDomain': InherentNullDomain, 'SizedDomain': SizedDomain }.get(origin) if domain is not None: return domain[cls._parse_args(type_name[start + 1: end], generics=generics)[0]] if 0 < start < end < len(type_name): return RuntimeType(origin, args=cls._parse_args(type_name[start + 1: end], generics=generics)) if start == end < 0: return type_name if isinstance(type_name, Hashable) and type_name in ELEMENTARY_TYPES: return ELEMENTARY_TYPES[type_name] if type_name == tuple: raise UnknownTypeException(f"non-parameterized argument") raise UnknownTypeException(f"unable to parse type: {type_name}")
@classmethod def _parse_args(cls, args, generics=None): import re return [cls.parse(v, generics=generics) for v in re.split(",\\s*(?![^()<>]*\\))", args)]
[docs] @classmethod def infer(cls, public_example: Any) -> Union["RuntimeType", str]: """Infer the normalized type from a public example. :param public_example: data used to infer the type :return: Normalized type. If the type has subtypes, returns a RuntimeType, else a str. :rtype: Union["RuntimeType", str] :raises UnknownTypeException: if inference fails on `public_example` :examples: >>> from opendp.typing import RuntimeType, L1Distance >>> assert RuntimeType.infer(23) == "i32" >>> assert RuntimeType.infer(12.) == "f64" >>> assert RuntimeType.infer(["A", "B"]) == "Vec<String>" >>> assert RuntimeType.infer((12., True, "A")) == "(f64, bool,String)" # eq doesn't care about whitespace """ if type(public_example) in ELEMENTARY_TYPES: return ELEMENTARY_TYPES[type(public_example)] if isinstance(public_example, tuple): return RuntimeType('Tuple', list(map(cls.infer, public_example))) if isinstance(public_example, list): return RuntimeType('Vec', [ cls.infer(public_example[0]) if public_example else UnknownType( "cannot infer atomic type of empty list") ]) if public_example is None: return RuntimeType('Option', [UnknownType("Constructed Option from a None variant")]) raise UnknownTypeException(public_example)
[docs] @classmethod def parse_or_infer( cls, type_name: RuntimeTypeDescriptor = None, public_example: Any = None, generics: List[str] = None ) -> Union["RuntimeType", str]: """If type_name is supplied, normalize it. Otherwise, infer the normalized type from a public example. :param type_name: type specifier. See RuntimeType.parse for documentation on valid inputs :param public_example: data used to infer the type :return: Normalized type. If the type has subtypes, returns a RuntimeType, else a str. :rtype: Union["RuntimeType", str] :param generics: For internal use. List of type names to consider generic when parsing. :type: List[str] :raises ValueError: if `type_name` fails to parse :raises UnknownTypeException: if inference fails on `public_example` or no args are supplied """ if type_name is not None: return cls.parse(type_name, generics) if public_example is not None: return cls.infer(public_example) raise UnknownTypeException("either type_name or public_example must be passed")
[docs] @classmethod def assert_is_similar(cls, expected, inferred): """Assert that `inferred` is a member of the same equivalence class as `parsed`. :param expected: the type that the data will be converted to :param inferred: the type inferred from data :raises AssertionError: if `expected` type differs significantly from `inferred` type """ if isinstance(inferred, UnknownType): return if isinstance(expected, str) and isinstance(inferred, str): if inferred in ATOM_EQUIVALENCE_CLASSES: assert expected in ATOM_EQUIVALENCE_CLASSES[inferred], \ f"inferred type is {inferred}, expected {expected}" else: assert expected == inferred, \ f"inferred type is {inferred}, expected {expected}" elif isinstance(expected, RuntimeType) and isinstance(inferred, RuntimeType): # allow extra flexibility around options, as the inferred type of an Option::<T>::Some will just be T if expected.origin == "Option" and inferred.origin != "Option": expected = expected.args[0] assert expected.origin == inferred.origin, \ f"inferred type is {inferred.origin}, expected {expected.origin}" assert len(expected.args) == len(inferred.args), \ f"inferred type has {len(inferred.args)} arg(s), expected {len(expected.args)} arg(s)" for (arg_par, arg_inf) in zip(expected.args, inferred.args): RuntimeType.assert_is_similar(arg_par, arg_inf) else: raise AssertionError(f"args are not similar because they have differing depths. Expected: {expected}. Inferred: {inferred}")
[docs] def substitute(self, **kwargs): if isinstance(self, GenericType): return kwargs.get(self.origin, self) if isinstance(self, RuntimeType): return RuntimeType(self.origin, self.args and [RuntimeType.substitute(arg, **kwargs) for arg in self.args]) return self
[docs] class GenericType(RuntimeType): def __str__(self): raise UnknownTypeException(f"attempted to create a type_name with an unknown generic: {self.origin}")
[docs] class UnknownType(RuntimeType): """Indicator for a type that cannot be inferred. Typically the atomic type of an empty list. RuntimeTypes containing UnknownType cannot be used in FFI, but still pass RuntimeType.assert_is_similar """ def __init__(self, reason): self.origin = None self.args = [] self.reason = reason def __str__(self): raise UnknownTypeException(f"attempted to create a type_name with an unknown type: {self.reason}")
[docs] class DatasetMetric(RuntimeType): """All dataset metric RuntimeTypes inherit from DatasetMetric. Provides static type checking in user-code for dataset metrics. """ pass
SubstituteDistance = DatasetMetric('SubstituteDistance') SymmetricDistance = DatasetMetric('SymmetricDistance')
[docs] class SensitivityMetric(RuntimeType): """All sensitivity RuntimeTypes inherit from SensitivityMetric. Provides static type checking in user-code for sensitivity metrics and a getitem interface like stdlib typing. """ def __getitem__(self, associated_type): return SensitivityMetric(self.origin, [self.parse(type_name=associated_type)])
AbsoluteDistance = SensitivityMetric('AbsoluteDistance') L1Distance = SensitivityMetric('L1Distance') L2Distance = SensitivityMetric('L2Distance')
[docs] class PrivacyMeasure(RuntimeType): """All measure RuntimeTypes inherit from PrivacyMeasure. Provides static type checking in user-code for privacy measures and a getitem interface like stdlib typing. """ def __getitem__(self, associated_type): return PrivacyMeasure(self.origin, [self.parse(type_name=associated_type)])
MaxDivergence = PrivacyMeasure('MaxDivergence') SmoothedMaxDivergence = PrivacyMeasure('SmoothedMaxDivergence')
[docs] class Domain(RuntimeType): def __getitem__(self, subdomain): return Domain(self.origin, [self.parse(type_name=subdomain)])
AllDomain = Domain('AllDomain') IntervalDomain = Domain('IntervalDomain') VectorDomain = Domain('VectorDomain') OptionNullDomain = Domain('OptionNullDomain') InherentNullDomain = Domain('InherentNullDomain') SizedDomain = Domain('SizedDomain')
[docs] def get_domain_atom(domain): while isinstance(domain, RuntimeType): if isinstance(domain, (UnknownType, GenericType)): return domain = domain.args[0] return domain
[docs] def get_domain_atom_or_infer(domain: RuntimeType, example): return get_domain_atom(domain) or RuntimeType.infer(example)