# Auto-generated. Do not edit!
'''
The ``measurements`` module provides functions that apply calibrated noise to data to ensure differential privacy.
For more context, see :ref:`measurements in the User Guide <measurements-user-guide>`.
For convenience, all the functions of this module are also available from :py:mod:`opendp.prelude`.
We suggest importing under the conventional name ``dp``:
.. code:: python
>>> import opendp.prelude as dp
The methods of this module will then be accessible at ``dp.m``.
'''
from opendp._convert import *
from opendp._lib import *
from opendp.mod import *
from opendp.typing import *
from opendp.core import *
from opendp.domains import *
from opendp.metrics import *
from opendp.measures import *
__all__ = [
"make_alp_queryable",
"make_gaussian",
"make_geometric",
"make_laplace",
"make_laplace_threshold",
"make_private_expr",
"make_private_lazyframe",
"make_randomized_response",
"make_randomized_response_bool",
"make_report_noisy_max_gumbel",
"make_user_measurement",
"then_alp_queryable",
"then_gaussian",
"then_geometric",
"then_laplace",
"then_laplace_threshold",
"then_private_expr",
"then_private_lazyframe",
"then_report_noisy_max_gumbel",
"then_user_measurement"
]
[docs]
def make_alp_queryable(
input_domain: Domain,
input_metric: Metric,
scale,
total_limit,
value_limit = None,
size_factor = 50,
alpha = 4,
CO: Optional[RuntimeTypeDescriptor] = None
) -> Measurement:
r"""Measurement to release a queryable containing a DP projection of bounded sparse data.
The size of the projection is O(total * size_factor * scale / alpha).
The evaluation time of post-processing is O(beta * scale / alpha).
`size_factor` is an optional multiplier (defaults to 50) for setting the size of the projection.
There is a memory/utility trade-off.
The value should be sufficiently large to limit hash collisions.
[make_alp_queryable in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_alp_queryable.html)
**Citations:**
* [ALP21 Differentially Private Sparse Vectors with Low Error, Optimal Space, and Fast Access](https://arxiv.org/abs/2106.10068) Algorithm 4
**Supporting Elements:**
* Input Domain: `MapDomain<AtomDomain<K>, AtomDomain<CI>>`
* Output Type: `Queryable<K, CO>`
* Input Metric: `L1Distance<CI>`
* Output Measure: `MaxDivergence<CO>`
:param input_domain:
:type input_domain: Domain
:param input_metric:
:type input_metric: Metric
:param scale: Privacy loss parameter. This is equal to epsilon/sensitivity.
:param total_limit: Either the true value or an upper bound estimate of the sum of all values in the input.
:param value_limit: Upper bound on individual values (referred to as β). Entries above β are clamped.
:param size_factor: Optional multiplier (default of 50) for setting the size of the projection.
:param alpha: Optional parameter (default of 4) for scaling and determining p in randomized response step.
:param CO:
:type CO: :py:ref:`RuntimeTypeDescriptor`
:rtype: Measurement
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
assert_features("contrib")
# Standardize type arguments.
CO = RuntimeType.parse_or_infer(type_name=CO, public_example=scale)
CI = get_value_type(get_carrier_type(input_domain)) # type: ignore
# Convert arguments to c types.
c_input_domain = py_to_c(input_domain, c_type=Domain, type_name=None)
c_input_metric = py_to_c(input_metric, c_type=Metric, type_name=None)
c_scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=CO)
c_total_limit = py_to_c(total_limit, c_type=ctypes.c_void_p, type_name=CI)
c_value_limit = py_to_c(value_limit, c_type=ctypes.c_void_p, type_name=RuntimeType(origin='Option', args=[CI]))
c_size_factor = py_to_c(size_factor, c_type=ctypes.c_void_p, type_name=RuntimeType(origin='Option', args=[u32]))
c_alpha = py_to_c(alpha, c_type=ctypes.c_void_p, type_name=RuntimeType(origin='Option', args=[u32]))
c_CO = py_to_c(CO, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_measurements__make_alp_queryable
lib_function.argtypes = [Domain, Metric, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_input_domain, c_input_metric, c_scale, c_total_limit, c_value_limit, c_size_factor, c_alpha, c_CO), Measurement))
return output
[docs]
def then_alp_queryable(
scale,
total_limit,
value_limit = None,
size_factor = 50,
alpha = 4,
CO: Optional[RuntimeTypeDescriptor] = None
):
r"""partial constructor of make_alp_queryable
.. seealso::
Delays application of `input_domain` and `input_metric` in :py:func:`opendp.measurements.make_alp_queryable`
:param scale: Privacy loss parameter. This is equal to epsilon/sensitivity.
:param total_limit: Either the true value or an upper bound estimate of the sum of all values in the input.
:param value_limit: Upper bound on individual values (referred to as β). Entries above β are clamped.
:param size_factor: Optional multiplier (default of 50) for setting the size of the projection.
:param alpha: Optional parameter (default of 4) for scaling and determining p in randomized response step.
:param CO:
:type CO: :py:ref:`RuntimeTypeDescriptor`
"""
return PartialConstructor(lambda input_domain, input_metric: make_alp_queryable(
input_domain=input_domain,
input_metric=input_metric,
scale=scale,
total_limit=total_limit,
value_limit=value_limit,
size_factor=size_factor,
alpha=alpha,
CO=CO))
[docs]
def make_gaussian(
input_domain: Domain,
input_metric: Metric,
scale,
k = None,
MO: RuntimeTypeDescriptor = "ZeroConcentratedDivergence<QO>"
) -> Measurement:
r"""Make a Measurement that adds noise from the Gaussian(`scale`) distribution to the input.
Valid inputs for `input_domain` and `input_metric` are:
| `input_domain` | input type | `input_metric` |
| ------------------------------- | ------------ | ----------------------- |
| `atom_domain(T)` | `T` | `absolute_distance(QI)` |
| `vector_domain(atom_domain(T))` | `Vec<T>` | `l2_distance(QI)` |
[make_gaussian in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_gaussian.html)
**Supporting Elements:**
* Input Domain: `D`
* Output Type: `D::Carrier`
* Input Metric: `D::InputMetric`
* Output Measure: `MO`
:param input_domain: Domain of the data type to be privatized.
:type input_domain: Domain
:param input_metric: Metric of the data type to be privatized.
:type input_metric: Metric
:param scale: Noise scale parameter for the gaussian distribution. `scale` == standard_deviation.
:param k: The noise granularity in terms of 2^k.
:param MO: Output Measure. The only valid measure is `ZeroConcentratedDivergence<T>`.
:type MO: :py:ref:`RuntimeTypeDescriptor`
:rtype: Measurement
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
:example:
>>> dp.enable_features('contrib')
>>> input_space = dp.atom_domain(T=float), dp.absolute_distance(T=float)
>>> gaussian = dp.m.make_gaussian(*input_space, scale=1.0)
>>> print('100?', gaussian(100.0))
100? ...
Or, more readably, define the space and then chain:
>>> gaussian = input_space >> dp.m.then_gaussian(scale=1.0)
>>> print('100?', gaussian(100.0))
100? ...
"""
assert_features("contrib")
# Standardize type arguments.
MO = RuntimeType.parse(type_name=MO, generics=["QO"])
QO = get_atom_or_infer(MO, scale) # type: ignore
MO = MO.substitute(QO=QO) # type: ignore
# Convert arguments to c types.
c_input_domain = py_to_c(input_domain, c_type=Domain, type_name=None)
c_input_metric = py_to_c(input_metric, c_type=Metric, type_name=None)
c_scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=QO)
c_k = py_to_c(k, c_type=ctypes.c_void_p, type_name=RuntimeType(origin='Option', args=[i32]))
c_MO = py_to_c(MO, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_measurements__make_gaussian
lib_function.argtypes = [Domain, Metric, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_input_domain, c_input_metric, c_scale, c_k, c_MO), Measurement))
return output
[docs]
def then_gaussian(
scale,
k = None,
MO: RuntimeTypeDescriptor = "ZeroConcentratedDivergence<QO>"
):
r"""partial constructor of make_gaussian
.. seealso::
Delays application of `input_domain` and `input_metric` in :py:func:`opendp.measurements.make_gaussian`
:param scale: Noise scale parameter for the gaussian distribution. `scale` == standard_deviation.
:param k: The noise granularity in terms of 2^k.
:param MO: Output Measure. The only valid measure is `ZeroConcentratedDivergence<T>`.
:type MO: :py:ref:`RuntimeTypeDescriptor`
:example:
>>> dp.enable_features('contrib')
>>> input_space = dp.atom_domain(T=float), dp.absolute_distance(T=float)
>>> gaussian = dp.m.make_gaussian(*input_space, scale=1.0)
>>> print('100?', gaussian(100.0))
100? ...
Or, more readably, define the space and then chain:
>>> gaussian = input_space >> dp.m.then_gaussian(scale=1.0)
>>> print('100?', gaussian(100.0))
100? ...
"""
return PartialConstructor(lambda input_domain, input_metric: make_gaussian(
input_domain=input_domain,
input_metric=input_metric,
scale=scale,
k=k,
MO=MO))
[docs]
def make_geometric(
input_domain: Domain,
input_metric: Metric,
scale,
bounds = None,
QO: Optional[RuntimeTypeDescriptor] = None
) -> Measurement:
r"""Equivalent to `make_laplace` but restricted to an integer support.
Can specify `bounds` to run the algorithm in near constant-time.
[make_geometric in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_geometric.html)
**Citations:**
* [GRS12 Universally Utility-Maximizing Privacy Mechanisms](https://theory.stanford.edu/~tim/papers/priv.pdf)
**Supporting Elements:**
* Input Domain: `D`
* Output Type: `D::Carrier`
* Input Metric: `D::InputMetric`
* Output Measure: `MaxDivergence<QO>`
:param input_domain:
:type input_domain: Domain
:param input_metric:
:type input_metric: Metric
:param scale:
:param bounds:
:param QO:
:type QO: :py:ref:`RuntimeTypeDescriptor`
:rtype: Measurement
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
:example:
>>> dp.enable_features("contrib")
>>> input_space = dp.atom_domain(T=int), dp.absolute_distance(T=int)
>>> geometric = dp.m.make_geometric(*input_space, scale=1.0)
>>> print('100?', geometric(100))
100? ...
Or, more readably, define the space and then chain:
>>> geometric = input_space >> dp.m.then_geometric(scale=1.0)
>>> print('100?', geometric(100))
100? ...
"""
assert_features("contrib")
# Standardize type arguments.
QO = RuntimeType.parse_or_infer(type_name=QO, public_example=scale)
T = get_atom(get_carrier_type(input_domain)) # type: ignore
OptionT = RuntimeType(origin='Option', args=[RuntimeType(origin='Tuple', args=[T, T])]) # type: ignore
# Convert arguments to c types.
c_input_domain = py_to_c(input_domain, c_type=Domain, type_name=None)
c_input_metric = py_to_c(input_metric, c_type=Metric, type_name=None)
c_scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=QO)
c_bounds = py_to_c(bounds, c_type=AnyObjectPtr, type_name=OptionT)
c_QO = py_to_c(QO, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_measurements__make_geometric
lib_function.argtypes = [Domain, Metric, ctypes.c_void_p, AnyObjectPtr, ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_input_domain, c_input_metric, c_scale, c_bounds, c_QO), Measurement))
return output
[docs]
def then_geometric(
scale,
bounds = None,
QO: Optional[RuntimeTypeDescriptor] = None
):
r"""partial constructor of make_geometric
.. seealso::
Delays application of `input_domain` and `input_metric` in :py:func:`opendp.measurements.make_geometric`
:param scale:
:param bounds:
:param QO:
:type QO: :py:ref:`RuntimeTypeDescriptor`
:example:
>>> dp.enable_features("contrib")
>>> input_space = dp.atom_domain(T=int), dp.absolute_distance(T=int)
>>> geometric = dp.m.make_geometric(*input_space, scale=1.0)
>>> print('100?', geometric(100))
100? ...
Or, more readably, define the space and then chain:
>>> geometric = input_space >> dp.m.then_geometric(scale=1.0)
>>> print('100?', geometric(100))
100? ...
"""
return PartialConstructor(lambda input_domain, input_metric: make_geometric(
input_domain=input_domain,
input_metric=input_metric,
scale=scale,
bounds=bounds,
QO=QO))
[docs]
def make_laplace(
input_domain: Domain,
input_metric: Metric,
scale,
k = None,
QO: RuntimeTypeDescriptor = "float"
) -> Measurement:
r"""Make a Measurement that adds noise from the Laplace(`scale`) distribution to the input.
Valid inputs for `input_domain` and `input_metric` are:
| `input_domain` | input type | `input_metric` |
| ------------------------------- | ------------ | ---------------------- |
| `atom_domain(T)` (default) | `T` | `absolute_distance(T)` |
| `vector_domain(atom_domain(T))` | `Vec<T>` | `l1_distance(T)` |
Internally, all sampling is done using the discrete Laplace distribution.
[make_laplace in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_laplace.html)
**Citations:**
* [GRS12 Universally Utility-Maximizing Privacy Mechanisms](https://theory.stanford.edu/~tim/papers/priv.pdf)
* [CKS20 The Discrete Gaussian for Differential Privacy](https://arxiv.org/pdf/2004.00010.pdf#subsection.5.2)
**Supporting Elements:**
* Input Domain: `D`
* Output Type: `D::Carrier`
* Input Metric: `D::InputMetric`
* Output Measure: `MaxDivergence<QO>`
:param input_domain: Domain of the data type to be privatized.
:type input_domain: Domain
:param input_metric: Metric of the data type to be privatized.
:type input_metric: Metric
:param scale: Noise scale parameter for the Laplace distribution. `scale` == standard_deviation / sqrt(2).
:param k: The noise granularity in terms of 2^k, only valid for domains over floats.
:param QO: Data type of the output distance and scale. `f32` or `f64`.
:type QO: :py:ref:`RuntimeTypeDescriptor`
:rtype: Measurement
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
:example:
>>> import opendp.prelude as dp
>>> dp.enable_features("contrib")
>>> input_space = dp.atom_domain(T=float), dp.absolute_distance(T=float)
>>> laplace = dp.m.make_laplace(*input_space, scale=1.0)
>>> print('100?', laplace(100.0))
100? ...
Or, more readably, define the space and then chain:
>>> laplace = input_space >> dp.m.then_laplace(scale=1.0)
>>> print('100?', laplace(100.0))
100? ...
"""
assert_features("contrib")
# Standardize type arguments.
QO = RuntimeType.parse(type_name=QO)
# Convert arguments to c types.
c_input_domain = py_to_c(input_domain, c_type=Domain, type_name=None)
c_input_metric = py_to_c(input_metric, c_type=Metric, type_name=None)
c_scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=get_atom(QO))
c_k = py_to_c(k, c_type=ctypes.c_void_p, type_name=RuntimeType(origin='Option', args=[i32]))
c_QO = py_to_c(QO, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_measurements__make_laplace
lib_function.argtypes = [Domain, Metric, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_input_domain, c_input_metric, c_scale, c_k, c_QO), Measurement))
return output
[docs]
def then_laplace(
scale,
k = None,
QO: RuntimeTypeDescriptor = "float"
):
r"""partial constructor of make_laplace
.. seealso::
Delays application of `input_domain` and `input_metric` in :py:func:`opendp.measurements.make_laplace`
:param scale: Noise scale parameter for the Laplace distribution. `scale` == standard_deviation / sqrt(2).
:param k: The noise granularity in terms of 2^k, only valid for domains over floats.
:param QO: Data type of the output distance and scale. `f32` or `f64`.
:type QO: :py:ref:`RuntimeTypeDescriptor`
:example:
>>> import opendp.prelude as dp
>>> dp.enable_features("contrib")
>>> input_space = dp.atom_domain(T=float), dp.absolute_distance(T=float)
>>> laplace = dp.m.make_laplace(*input_space, scale=1.0)
>>> print('100?', laplace(100.0))
100? ...
Or, more readably, define the space and then chain:
>>> laplace = input_space >> dp.m.then_laplace(scale=1.0)
>>> print('100?', laplace(100.0))
100? ...
"""
return PartialConstructor(lambda input_domain, input_metric: make_laplace(
input_domain=input_domain,
input_metric=input_metric,
scale=scale,
k=k,
QO=QO))
[docs]
def make_laplace_threshold(
input_domain: Domain,
input_metric: Metric,
scale,
threshold,
k: int = -1074
) -> Measurement:
r"""Make a Measurement that uses propose-test-release to privatize a hashmap of counts.
This function takes a noise granularity in terms of 2^k.
Larger granularities are more computationally efficient, but have a looser privacy map.
If k is not set, k defaults to the smallest granularity.
[make_laplace_threshold in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_laplace_threshold.html)
**Supporting Elements:**
* Input Domain: `MapDomain<AtomDomain<TK>, AtomDomain<TV>>`
* Output Type: `HashMap<TK, TV>`
* Input Metric: `L1Distance<TV>`
* Output Measure: `FixedSmoothedMaxDivergence<TV>`
:param input_domain: Domain of the input.
:type input_domain: Domain
:param input_metric: Metric for the input domain.
:type input_metric: Metric
:param scale: Noise scale parameter for the laplace distribution. `scale` == standard_deviation / sqrt(2).
:param threshold: Exclude counts that are less than this minimum value.
:param k: The noise granularity in terms of 2^k.
:type k: int
:rtype: Measurement
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
assert_features("contrib", "floating-point")
# Standardize type arguments.
TV = get_distance_type(input_metric) # type: ignore
# Convert arguments to c types.
c_input_domain = py_to_c(input_domain, c_type=Domain, type_name=None)
c_input_metric = py_to_c(input_metric, c_type=Metric, type_name=None)
c_scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=TV)
c_threshold = py_to_c(threshold, c_type=ctypes.c_void_p, type_name=TV)
c_k = py_to_c(k, c_type=ctypes.c_uint32, type_name=i32)
# Call library function.
lib_function = lib.opendp_measurements__make_laplace_threshold
lib_function.argtypes = [Domain, Metric, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_uint32]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_input_domain, c_input_metric, c_scale, c_threshold, c_k), Measurement))
return output
[docs]
def then_laplace_threshold(
scale,
threshold,
k: int = -1074
):
r"""partial constructor of make_laplace_threshold
.. seealso::
Delays application of `input_domain` and `input_metric` in :py:func:`opendp.measurements.make_laplace_threshold`
:param scale: Noise scale parameter for the laplace distribution. `scale` == standard_deviation / sqrt(2).
:param threshold: Exclude counts that are less than this minimum value.
:param k: The noise granularity in terms of 2^k.
:type k: int
"""
return PartialConstructor(lambda input_domain, input_metric: make_laplace_threshold(
input_domain=input_domain,
input_metric=input_metric,
scale=scale,
threshold=threshold,
k=k))
[docs]
def make_private_expr(
input_domain: Domain,
input_metric: Metric,
output_measure: Measure,
expr,
global_scale = None
) -> Measurement:
r"""Create a differentially private measurement from an [`Expr`].
[make_private_expr in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_private_expr.html)
**Supporting Elements:**
* Input Domain: `ExprDomain`
* Output Type: `Expr`
* Input Metric: `MI`
* Output Measure: `MO`
**Features:**
* `honest-but-curious` - The privacy guarantee governs only at most one evaluation of the released expression.
:param input_domain: The domain of the input data.
:type input_domain: Domain
:param input_metric: How to measure distances between neighboring input data sets.
:type input_metric: Metric
:param output_measure: How to measure privacy loss.
:type output_measure: Measure
:param expr: The [`Expr`] to be privatized.
:param global_scale: A tune-able parameter that affects the privacy-utility tradeoff.
:rtype: Measurement
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
assert_features("contrib", "honest-but-curious")
# No type arguments to standardize.
# Convert arguments to c types.
c_input_domain = py_to_c(input_domain, c_type=Domain, type_name=None)
c_input_metric = py_to_c(input_metric, c_type=Metric, type_name=None)
c_output_measure = py_to_c(output_measure, c_type=Measure, type_name=None)
c_expr = py_to_c(expr, c_type=AnyObjectPtr, type_name=Expr)
c_global_scale = py_to_c(global_scale, c_type=AnyObjectPtr, type_name=RuntimeType(origin='Option', args=[f64]))
# Call library function.
lib_function = lib.opendp_measurements__make_private_expr
lib_function.argtypes = [Domain, Metric, Measure, AnyObjectPtr, AnyObjectPtr]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_input_domain, c_input_metric, c_output_measure, c_expr, c_global_scale), Measurement))
return output
[docs]
def then_private_expr(
output_measure: Measure,
expr,
global_scale = None
):
r"""partial constructor of make_private_expr
.. seealso::
Delays application of `input_domain` and `input_metric` in :py:func:`opendp.measurements.make_private_expr`
:param output_measure: How to measure privacy loss.
:type output_measure: Measure
:param expr: The [`Expr`] to be privatized.
:param global_scale: A tune-able parameter that affects the privacy-utility tradeoff.
"""
return PartialConstructor(lambda input_domain, input_metric: make_private_expr(
input_domain=input_domain,
input_metric=input_metric,
output_measure=output_measure,
expr=expr,
global_scale=global_scale))
[docs]
def make_private_lazyframe(
input_domain: Domain,
input_metric: Metric,
output_measure: Measure,
lazyframe,
global_scale = None
) -> Measurement:
r"""Create a differentially private measurement from a [`LazyFrame`].
Any data inside the [`LazyFrame`] is ignored,
but it is still recommended to start with an empty [`DataFrame`] and build up the computation using the [`LazyFrame`] API.
[make_private_lazyframe in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_private_lazyframe.html)
**Supporting Elements:**
* Input Domain: `LazyFrameDomain`
* Output Type: `OnceFrame`
* Input Metric: `MI`
* Output Measure: `MO`
:param input_domain: The domain of the input data.
:type input_domain: Domain
:param input_metric: How to measure distances between neighboring input data sets.
:type input_metric: Metric
:param output_measure: How to measure privacy loss.
:type output_measure: Measure
:param lazyframe: A description of the computations to be run, in the form of a [`LazyFrame`].
:param global_scale: A tune-able parameter that affects the privacy-utility tradeoff.
:rtype: Measurement
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
:example:
>>> dp.enable_features("contrib")
>>> import polars as pl
We'll imagine an elementary school is taking a pet census.
The private census data will have two columns:
>>> lf_domain = dp.lazyframe_domain([
... dp.series_domain("grade", dp.atom_domain(T=dp.i32)),
... dp.series_domain("pet_count", dp.atom_domain(T=dp.i32))])
We also need to specify the column we'll be grouping by.
>>> lf_domain_with_margin = dp.with_margin(
... lf_domain,
... by=["grade"],
... public_info="keys",
... max_partition_length=50)
With that in place, we can plan the Polars computation, using the `dp` plugin.
>>> plan = (
... pl.LazyFrame(schema={'grade': pl.Int32, 'pet_count': pl.Int32})
... .group_by("grade")
... .agg(pl.col("pet_count").dp.sum((0, 10), scale=1.0))
... .sort("grade"))
We now have all the pieces to make our measurement function using `make_private_lazyframe`:
>>> dp_sum_pets_by_grade = dp.m.make_private_lazyframe(
... input_domain=lf_domain_with_margin,
... input_metric=dp.symmetric_distance(),
... output_measure=dp.max_divergence(T=float),
... lazyframe=plan,
... global_scale=1.0)
It's only at this point that we need to introduce the private data.
>>> df = pl.from_records(
... [
... [0, 0], # No kindergarteners with pets.
... [0, 0],
... [0, 0],
... [1, 1], # Each first grader has 1 pet.
... [1, 1],
... [1, 1],
... [2, 1], # One second grader has chickens!
... [2, 1],
... [2, 9]
... ],
... schema=['grade', 'pet_count'])
>>> lf = pl.LazyFrame(df)
>>> results = dp_sum_pets_by_grade(lf).collect()
>>> print(results) # doctest: +ELLIPSIS
shape: (3, 2)
┌───────┬───────────┐
│ grade ┆ pet_count │
│ --- ┆ --- │
│ i64 ┆ i64 │
╞═══════╪═══════════╡
│ 0 ┆ ... │
│ 1 ┆ ... │
│ 2 ┆ ... │
└───────┴───────────┘
"""
assert_features("contrib")
# No type arguments to standardize.
# Convert arguments to c types.
c_input_domain = py_to_c(input_domain, c_type=Domain, type_name=None)
c_input_metric = py_to_c(input_metric, c_type=Metric, type_name=None)
c_output_measure = py_to_c(output_measure, c_type=Measure, type_name=None)
c_lazyframe = py_to_c(lazyframe, c_type=AnyObjectPtr, type_name=LazyFrame)
c_global_scale = py_to_c(global_scale, c_type=AnyObjectPtr, type_name=RuntimeType(origin='Option', args=[f64]))
# Call library function.
lib_function = lib.opendp_measurements__make_private_lazyframe
lib_function.argtypes = [Domain, Metric, Measure, AnyObjectPtr, AnyObjectPtr]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_input_domain, c_input_metric, c_output_measure, c_lazyframe, c_global_scale), Measurement))
return output
[docs]
def then_private_lazyframe(
output_measure: Measure,
lazyframe,
global_scale = None
):
r"""partial constructor of make_private_lazyframe
.. seealso::
Delays application of `input_domain` and `input_metric` in :py:func:`opendp.measurements.make_private_lazyframe`
:param output_measure: How to measure privacy loss.
:type output_measure: Measure
:param lazyframe: A description of the computations to be run, in the form of a [`LazyFrame`].
:param global_scale: A tune-able parameter that affects the privacy-utility tradeoff.
:example:
>>> dp.enable_features("contrib")
>>> import polars as pl
We'll imagine an elementary school is taking a pet census.
The private census data will have two columns:
>>> lf_domain = dp.lazyframe_domain([
... dp.series_domain("grade", dp.atom_domain(T=dp.i32)),
... dp.series_domain("pet_count", dp.atom_domain(T=dp.i32))])
We also need to specify the column we'll be grouping by.
>>> lf_domain_with_margin = dp.with_margin(
... lf_domain,
... by=["grade"],
... public_info="keys",
... max_partition_length=50)
With that in place, we can plan the Polars computation, using the `dp` plugin.
>>> plan = (
... pl.LazyFrame(schema={'grade': pl.Int32, 'pet_count': pl.Int32})
... .group_by("grade")
... .agg(pl.col("pet_count").dp.sum((0, 10), scale=1.0))
... .sort("grade"))
We now have all the pieces to make our measurement function using `make_private_lazyframe`:
>>> dp_sum_pets_by_grade = dp.m.make_private_lazyframe(
... input_domain=lf_domain_with_margin,
... input_metric=dp.symmetric_distance(),
... output_measure=dp.max_divergence(T=float),
... lazyframe=plan,
... global_scale=1.0)
It's only at this point that we need to introduce the private data.
>>> df = pl.from_records(
... [
... [0, 0], # No kindergarteners with pets.
... [0, 0],
... [0, 0],
... [1, 1], # Each first grader has 1 pet.
... [1, 1],
... [1, 1],
... [2, 1], # One second grader has chickens!
... [2, 1],
... [2, 9]
... ],
... schema=['grade', 'pet_count'])
>>> lf = pl.LazyFrame(df)
>>> results = dp_sum_pets_by_grade(lf).collect()
>>> print(results) # doctest: +ELLIPSIS
shape: (3, 2)
┌───────┬───────────┐
│ grade ┆ pet_count │
│ --- ┆ --- │
│ i64 ┆ i64 │
╞═══════╪═══════════╡
│ 0 ┆ ... │
│ 1 ┆ ... │
│ 2 ┆ ... │
└───────┴───────────┘
"""
return PartialConstructor(lambda input_domain, input_metric: make_private_lazyframe(
input_domain=input_domain,
input_metric=input_metric,
output_measure=output_measure,
lazyframe=lazyframe,
global_scale=global_scale))
[docs]
def make_randomized_response(
categories,
prob,
constant_time: bool = False,
T: Optional[RuntimeTypeDescriptor] = None,
QO: Optional[RuntimeTypeDescriptor] = None
) -> Measurement:
r"""Make a Measurement that implements randomized response on a categorical value.
[make_randomized_response in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_randomized_response.html)
**Supporting Elements:**
* Input Domain: `AtomDomain<T>`
* Output Type: `T`
* Input Metric: `DiscreteDistance`
* Output Measure: `MaxDivergence<QO>`
:param categories: Set of valid outcomes
:param prob: Probability of returning the correct answer. Must be in `[1/num_categories, 1)`
:param constant_time: Set to true to enable constant time. Slower.
:type constant_time: bool
:param T: Data type of a category.
:type T: :py:ref:`RuntimeTypeDescriptor`
:param QO: Data type of probability and output distance.
:type QO: :py:ref:`RuntimeTypeDescriptor`
:rtype: Measurement
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
:example:
>>> dp.enable_features("contrib")
>>> random_string = dp.m.make_randomized_response(['a', 'b', 'c'], 0.99)
>>> print('a?', random_string('a'))
a? ...
"""
assert_features("contrib")
# Standardize type arguments.
T = RuntimeType.parse_or_infer(type_name=T, public_example=get_first(categories))
QO = RuntimeType.parse_or_infer(type_name=QO, public_example=prob)
# Convert arguments to c types.
c_categories = py_to_c(categories, c_type=AnyObjectPtr, type_name=RuntimeType(origin='Vec', args=[T]))
c_prob = py_to_c(prob, c_type=ctypes.c_void_p, type_name=QO)
c_constant_time = py_to_c(constant_time, c_type=ctypes.c_bool, type_name=bool)
c_T = py_to_c(T, c_type=ctypes.c_char_p)
c_QO = py_to_c(QO, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_measurements__make_randomized_response
lib_function.argtypes = [AnyObjectPtr, ctypes.c_void_p, ctypes.c_bool, ctypes.c_char_p, ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_categories, c_prob, c_constant_time, c_T, c_QO), Measurement))
return output
[docs]
def make_randomized_response_bool(
prob,
constant_time: bool = False,
QO: Optional[RuntimeTypeDescriptor] = None
) -> Measurement:
r"""Make a Measurement that implements randomized response on a boolean value.
[make_randomized_response_bool in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_randomized_response_bool.html)
**Supporting Elements:**
* Input Domain: `AtomDomain<bool>`
* Output Type: `bool`
* Input Metric: `DiscreteDistance`
* Output Measure: `MaxDivergence<QO>`
**Proof Definition:**
[(Proof Document)](https://docs.opendp.org/en/nightly/proofs/rust/src/measurements/randomized_response/make_randomized_response_bool.pdf)
:param prob: Probability of returning the correct answer. Must be in `[0.5, 1)`
:param constant_time: Set to true to enable constant time. Slower.
:type constant_time: bool
:param QO: Data type of probability and output distance.
:type QO: :py:ref:`RuntimeTypeDescriptor`
:rtype: Measurement
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
:example:
>>> dp.enable_features("contrib")
>>> random_bool = dp.m.make_randomized_response_bool(0.99)
>>> print('True?', random_bool(True))
True? ...
"""
assert_features("contrib")
# Standardize type arguments.
QO = RuntimeType.parse_or_infer(type_name=QO, public_example=prob)
# Convert arguments to c types.
c_prob = py_to_c(prob, c_type=ctypes.c_void_p, type_name=QO)
c_constant_time = py_to_c(constant_time, c_type=ctypes.c_bool, type_name=bool)
c_QO = py_to_c(QO, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_measurements__make_randomized_response_bool
lib_function.argtypes = [ctypes.c_void_p, ctypes.c_bool, ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_prob, c_constant_time, c_QO), Measurement))
return output
[docs]
def make_report_noisy_max_gumbel(
input_domain: Domain,
input_metric: Metric,
scale,
optimize: str,
QO: Optional[RuntimeTypeDescriptor] = None
) -> Measurement:
r"""Make a Measurement that takes a vector of scores and privately selects the index of the highest score.
[make_report_noisy_max_gumbel in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_report_noisy_max_gumbel.html)
**Supporting Elements:**
* Input Domain: `VectorDomain<AtomDomain<TIA>>`
* Output Type: `usize`
* Input Metric: `LInfDistance<TIA>`
* Output Measure: `MaxDivergence<QO>`
**Proof Definition:**
[(Proof Document)](https://docs.opendp.org/en/nightly/proofs/rust/src/measurements/gumbel_max/make_report_noisy_max_gumbel.pdf)
:param input_domain: Domain of the input vector. Must be a non-nullable VectorDomain.
:type input_domain: Domain
:param input_metric: Metric on the input domain. Must be LInfDistance
:type input_metric: Metric
:param scale: Higher scales are more private.
:param optimize: Indicate whether to privately return the "Max" or "Min"
:type optimize: str
:param QO: Output Distance Type.
:type QO: :py:ref:`RuntimeTypeDescriptor`
:rtype: Measurement
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
:example:
>>> dp.enable_features("contrib")
>>> input_space = dp.vector_domain(dp.atom_domain(T=int)), dp.linf_distance(T=int)
>>> select_index = dp.m.make_report_noisy_max_gumbel(*input_space, scale=1.0, optimize='max')
>>> print('2?', select_index([1, 2, 3, 2, 1]))
2? ...
Or, more readably, define the space and then chain:
>>> select_index = input_space >> dp.m.then_report_noisy_max_gumbel(scale=1.0, optimize='max')
>>> print('2?', select_index([1, 2, 3, 2, 1]))
2? ...
"""
assert_features("contrib")
# Standardize type arguments.
QO = RuntimeType.parse_or_infer(type_name=QO, public_example=scale)
# Convert arguments to c types.
c_input_domain = py_to_c(input_domain, c_type=Domain, type_name=None)
c_input_metric = py_to_c(input_metric, c_type=Metric, type_name=None)
c_scale = py_to_c(scale, c_type=AnyObjectPtr, type_name=QO)
c_optimize = py_to_c(optimize, c_type=ctypes.c_char_p, type_name=String)
c_QO = py_to_c(QO, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_measurements__make_report_noisy_max_gumbel
lib_function.argtypes = [Domain, Metric, AnyObjectPtr, ctypes.c_char_p, ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_input_domain, c_input_metric, c_scale, c_optimize, c_QO), Measurement))
return output
[docs]
def then_report_noisy_max_gumbel(
scale,
optimize: str,
QO: Optional[RuntimeTypeDescriptor] = None
):
r"""partial constructor of make_report_noisy_max_gumbel
.. seealso::
Delays application of `input_domain` and `input_metric` in :py:func:`opendp.measurements.make_report_noisy_max_gumbel`
:param scale: Higher scales are more private.
:param optimize: Indicate whether to privately return the "Max" or "Min"
:type optimize: str
:param QO: Output Distance Type.
:type QO: :py:ref:`RuntimeTypeDescriptor`
:example:
>>> dp.enable_features("contrib")
>>> input_space = dp.vector_domain(dp.atom_domain(T=int)), dp.linf_distance(T=int)
>>> select_index = dp.m.make_report_noisy_max_gumbel(*input_space, scale=1.0, optimize='max')
>>> print('2?', select_index([1, 2, 3, 2, 1]))
2? ...
Or, more readably, define the space and then chain:
>>> select_index = input_space >> dp.m.then_report_noisy_max_gumbel(scale=1.0, optimize='max')
>>> print('2?', select_index([1, 2, 3, 2, 1]))
2? ...
"""
return PartialConstructor(lambda input_domain, input_metric: make_report_noisy_max_gumbel(
input_domain=input_domain,
input_metric=input_metric,
scale=scale,
optimize=optimize,
QO=QO))
[docs]
def make_user_measurement(
input_domain: Domain,
input_metric: Metric,
output_measure: Measure,
function,
privacy_map,
TO: RuntimeTypeDescriptor = "ExtrinsicObject"
) -> Measurement:
r"""Construct a Measurement from user-defined callbacks.
**Supporting Elements:**
* Input Domain: `AnyDomain`
* Output Type: `AnyObject`
* Input Metric: `AnyMetric`
* Output Measure: `AnyMeasure`
:param input_domain: A domain describing the set of valid inputs for the function.
:type input_domain: Domain
:param input_metric: The metric from which distances between adjacent inputs are measured.
:type input_metric: Metric
:param output_measure: The measure from which distances between adjacent output distributions are measured.
:type output_measure: Measure
:param function: A function mapping data from `input_domain` to a release of type `TO`.
:param privacy_map: A function mapping distances from `input_metric` to `output_measure`.
:param TO: The data type of outputs from the function.
:type TO: :py:ref:`RuntimeTypeDescriptor`
:rtype: Measurement
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
:example:
>>> dp.enable_features("contrib")
>>> def const_function(_arg):
... return 42
>>> def privacy_map(_d_in):
... return 0.
>>> space = dp.atom_domain(T=int), dp.absolute_distance(int)
>>> user_measurement = dp.m.make_user_measurement(
... *space,
... output_measure=dp.max_divergence(float),
... function=const_function,
... privacy_map=privacy_map
... )
>>> print('42?', user_measurement(0))
42? 42
"""
assert_features("contrib", "honest-but-curious")
# Standardize type arguments.
TO = RuntimeType.parse(type_name=TO)
# Convert arguments to c types.
c_input_domain = py_to_c(input_domain, c_type=Domain, type_name=None)
c_input_metric = py_to_c(input_metric, c_type=Metric, type_name=None)
c_output_measure = py_to_c(output_measure, c_type=Measure, type_name=AnyMeasure)
c_function = py_to_c(function, c_type=CallbackFn, type_name=pass_through(TO))
c_privacy_map = py_to_c(privacy_map, c_type=CallbackFn, type_name=measure_distance_type(output_measure))
c_TO = py_to_c(TO, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_measurements__make_user_measurement
lib_function.argtypes = [Domain, Metric, Measure, CallbackFn, CallbackFn, ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_input_domain, c_input_metric, c_output_measure, c_function, c_privacy_map, c_TO), Measurement))
output._depends_on(input_domain, input_metric, output_measure, c_function, c_privacy_map)
return output
[docs]
def then_user_measurement(
output_measure: Measure,
function,
privacy_map,
TO: RuntimeTypeDescriptor = "ExtrinsicObject"
):
r"""partial constructor of make_user_measurement
.. seealso::
Delays application of `input_domain` and `input_metric` in :py:func:`opendp.measurements.make_user_measurement`
:param output_measure: The measure from which distances between adjacent output distributions are measured.
:type output_measure: Measure
:param function: A function mapping data from `input_domain` to a release of type `TO`.
:param privacy_map: A function mapping distances from `input_metric` to `output_measure`.
:param TO: The data type of outputs from the function.
:type TO: :py:ref:`RuntimeTypeDescriptor`
:example:
>>> dp.enable_features("contrib")
>>> def const_function(_arg):
... return 42
>>> def privacy_map(_d_in):
... return 0.
>>> space = dp.atom_domain(T=int), dp.absolute_distance(int)
>>> user_measurement = dp.m.make_user_measurement(
... *space,
... output_measure=dp.max_divergence(float),
... function=const_function,
... privacy_map=privacy_map
... )
>>> print('42?', user_measurement(0))
42? 42
"""
return PartialConstructor(lambda input_domain, input_metric: make_user_measurement(
input_domain=input_domain,
input_metric=input_metric,
output_measure=output_measure,
function=function,
privacy_map=privacy_map,
TO=TO))