This documentation is for an old version of OpenDP.

The current release of OpenDP is v0.11.1.

Source code for opendp.measures

# Auto-generated. Do not edit!
'''
The ``measures`` module provides functions that measure the distance between probability distributions.
For more context, see :ref:`measures in the User Guide <measures-user-guide>`.

For convenience, all the functions of this module are also available from :py:mod:`opendp.prelude`.
We suggest importing under the conventional name ``dp``:

.. code:: python

    >>> import opendp.prelude as dp
'''
from opendp._convert import *
from opendp._lib import *
from opendp.mod import *
from opendp.typing import *

__all__ = [
    "_measure_free",
    "fixed_smoothed_max_divergence",
    "max_divergence",
    "measure_debug",
    "measure_distance_type",
    "measure_type",
    "smoothed_max_divergence",
    "user_divergence",
    "zero_concentrated_divergence"
]


def _measure_free(
    this
):
    r"""Internal function. Free the memory associated with `this`.

    :param this: 
    :type this: Measure
    :raises TypeError: if an argument's type differs from the expected type
    :raises UnknownTypeException: if a type argument fails to parse
    :raises OpenDPException: packaged error from the core OpenDP library
    """
    # No type arguments to standardize.
    # Convert arguments to c types.
    c_this = this

    # Call library function.
    lib_function = lib.opendp_measures___measure_free
    lib_function.argtypes = [Measure]
    lib_function.restype = FfiResult

    output = c_to_py(unwrap(lib_function(c_this), ctypes.c_void_p))

    return output


[docs] def fixed_smoothed_max_divergence( T: RuntimeTypeDescriptor ) -> Measure: r"""Construct an instance of the `FixedSmoothedMaxDivergence` measure. [fixed_smoothed_max_divergence in Rust documentation.](https://docs.rs/opendp/latest/opendp/measures/fn.fixed_smoothed_max_divergence.html) :param T: :type T: :py:ref:`RuntimeTypeDescriptor` :rtype: Measure :raises TypeError: if an argument's type differs from the expected type :raises UnknownTypeException: if a type argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ # Standardize type arguments. T = RuntimeType.parse(type_name=T) # Convert arguments to c types. c_T = py_to_c(T, c_type=ctypes.c_char_p) # Call library function. lib_function = lib.opendp_measures__fixed_smoothed_max_divergence lib_function.argtypes = [ctypes.c_char_p] lib_function.restype = FfiResult output = c_to_py(unwrap(lib_function(c_T), Measure)) return output
[docs] def max_divergence( T: RuntimeTypeDescriptor ) -> Measure: r"""Construct an instance of the `MaxDivergence` measure. [max_divergence in Rust documentation.](https://docs.rs/opendp/latest/opendp/measures/fn.max_divergence.html) :param T: :type T: :py:ref:`RuntimeTypeDescriptor` :rtype: Measure :raises TypeError: if an argument's type differs from the expected type :raises UnknownTypeException: if a type argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ # Standardize type arguments. T = RuntimeType.parse(type_name=T) # Convert arguments to c types. c_T = py_to_c(T, c_type=ctypes.c_char_p) # Call library function. lib_function = lib.opendp_measures__max_divergence lib_function.argtypes = [ctypes.c_char_p] lib_function.restype = FfiResult output = c_to_py(unwrap(lib_function(c_T), Measure)) return output
[docs] def measure_debug( this: Measure ) -> str: r"""Debug a `measure`. :param this: The measure to debug (stringify). :type this: Measure :rtype: str :raises TypeError: if an argument's type differs from the expected type :raises UnknownTypeException: if a type argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ # No type arguments to standardize. # Convert arguments to c types. c_this = py_to_c(this, c_type=Measure, type_name=None) # Call library function. lib_function = lib.opendp_measures__measure_debug lib_function.argtypes = [Measure] lib_function.restype = FfiResult output = c_to_py(unwrap(lib_function(c_this), ctypes.c_char_p)) return output
[docs] def measure_distance_type( this: Measure ) -> str: r"""Get the distance type of a `measure`. :param this: The measure to retrieve the distance type from. :type this: Measure :rtype: str :raises TypeError: if an argument's type differs from the expected type :raises UnknownTypeException: if a type argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ # No type arguments to standardize. # Convert arguments to c types. c_this = py_to_c(this, c_type=Measure, type_name=None) # Call library function. lib_function = lib.opendp_measures__measure_distance_type lib_function.argtypes = [Measure] lib_function.restype = FfiResult output = c_to_py(unwrap(lib_function(c_this), ctypes.c_char_p)) return output
[docs] def measure_type( this: Measure ) -> str: r"""Get the type of a `measure`. :param this: The measure to retrieve the type from. :type this: Measure :rtype: str :raises TypeError: if an argument's type differs from the expected type :raises UnknownTypeException: if a type argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ # No type arguments to standardize. # Convert arguments to c types. c_this = py_to_c(this, c_type=Measure, type_name=None) # Call library function. lib_function = lib.opendp_measures__measure_type lib_function.argtypes = [Measure] lib_function.restype = FfiResult output = c_to_py(unwrap(lib_function(c_this), ctypes.c_char_p)) return output
[docs] def smoothed_max_divergence( T: RuntimeTypeDescriptor ) -> Measure: r"""Construct an instance of the `SmoothedMaxDivergence` measure. [smoothed_max_divergence in Rust documentation.](https://docs.rs/opendp/latest/opendp/measures/fn.smoothed_max_divergence.html) :param T: :type T: :py:ref:`RuntimeTypeDescriptor` :rtype: Measure :raises TypeError: if an argument's type differs from the expected type :raises UnknownTypeException: if a type argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ # Standardize type arguments. T = RuntimeType.parse(type_name=T) # Convert arguments to c types. c_T = py_to_c(T, c_type=ctypes.c_char_p) # Call library function. lib_function = lib.opendp_measures__smoothed_max_divergence lib_function.argtypes = [ctypes.c_char_p] lib_function.restype = FfiResult output = c_to_py(unwrap(lib_function(c_T), Measure)) return output
[docs] def user_divergence( descriptor: str ) -> Measure: r"""Construct a new UserDivergence. Any two instances of an UserDivergence are equal if their string descriptors are equal. :param descriptor: A string description of the privacy measure. :type descriptor: str :rtype: Measure :raises TypeError: if an argument's type differs from the expected type :raises UnknownTypeException: if a type argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ assert_features("honest-but-curious") # No type arguments to standardize. # Convert arguments to c types. c_descriptor = py_to_c(descriptor, c_type=ctypes.c_char_p, type_name=String) # Call library function. lib_function = lib.opendp_measures__user_divergence lib_function.argtypes = [ctypes.c_char_p] lib_function.restype = FfiResult output = c_to_py(unwrap(lib_function(c_descriptor), Measure)) return output
[docs] def zero_concentrated_divergence( T: RuntimeTypeDescriptor ) -> Measure: r"""Construct an instance of the `ZeroConcentratedDivergence` measure. [zero_concentrated_divergence in Rust documentation.](https://docs.rs/opendp/latest/opendp/measures/fn.zero_concentrated_divergence.html) :param T: :type T: :py:ref:`RuntimeTypeDescriptor` :rtype: Measure :raises TypeError: if an argument's type differs from the expected type :raises UnknownTypeException: if a type argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ # Standardize type arguments. T = RuntimeType.parse(type_name=T) # Convert arguments to c types. c_T = py_to_c(T, c_type=ctypes.c_char_p) # Call library function. lib_function = lib.opendp_measures__zero_concentrated_divergence lib_function.argtypes = [ctypes.c_char_p] lib_function.restype = FfiResult output = c_to_py(unwrap(lib_function(c_T), Measure)) return output