Source code for opendp.measures
# Auto-generated. Do not edit!
'''
The ``measures`` module provides functions that measure the distance between probability distributions.
For more context, see :ref:`measures in the User Guide <measures-user-guide>`.
For convenience, all the functions of this module are also available from :py:mod:`opendp.prelude`.
We suggest importing under the conventional name ``dp``:
.. code:: python
>>> import opendp.prelude as dp
'''
from opendp._convert import *
from opendp._lib import *
from opendp.mod import *
from opendp.typing import *
__all__ = [
"_measure_free",
"fixed_smoothed_max_divergence",
"max_divergence",
"measure_debug",
"measure_distance_type",
"measure_type",
"smoothed_max_divergence",
"user_divergence",
"zero_concentrated_divergence"
]
def _measure_free(
this
):
r"""Internal function. Free the memory associated with `this`.
:param this:
:type this: Measure
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
# No type arguments to standardize.
# Convert arguments to c types.
c_this = this
# Call library function.
lib_function = lib.opendp_measures___measure_free
lib_function.argtypes = [Measure]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_this), ctypes.c_void_p))
return output
[docs]
def fixed_smoothed_max_divergence(
T: RuntimeTypeDescriptor
) -> Measure:
r"""Construct an instance of the `FixedSmoothedMaxDivergence` measure.
[fixed_smoothed_max_divergence in Rust documentation.](https://docs.rs/opendp/latest/opendp/measures/fn.fixed_smoothed_max_divergence.html)
:param T:
:type T: :py:ref:`RuntimeTypeDescriptor`
:rtype: Measure
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
# Standardize type arguments.
T = RuntimeType.parse(type_name=T)
# Convert arguments to c types.
c_T = py_to_c(T, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_measures__fixed_smoothed_max_divergence
lib_function.argtypes = [ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_T), Measure))
return output
[docs]
def max_divergence(
T: RuntimeTypeDescriptor
) -> Measure:
r"""Construct an instance of the `MaxDivergence` measure.
[max_divergence in Rust documentation.](https://docs.rs/opendp/latest/opendp/measures/fn.max_divergence.html)
:param T:
:type T: :py:ref:`RuntimeTypeDescriptor`
:rtype: Measure
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
# Standardize type arguments.
T = RuntimeType.parse(type_name=T)
# Convert arguments to c types.
c_T = py_to_c(T, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_measures__max_divergence
lib_function.argtypes = [ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_T), Measure))
return output
[docs]
def measure_debug(
this: Measure
) -> str:
r"""Debug a `measure`.
:param this: The measure to debug (stringify).
:type this: Measure
:rtype: str
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
# No type arguments to standardize.
# Convert arguments to c types.
c_this = py_to_c(this, c_type=Measure, type_name=None)
# Call library function.
lib_function = lib.opendp_measures__measure_debug
lib_function.argtypes = [Measure]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_this), ctypes.c_char_p))
return output
[docs]
def measure_distance_type(
this: Measure
) -> str:
r"""Get the distance type of a `measure`.
:param this: The measure to retrieve the distance type from.
:type this: Measure
:rtype: str
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
# No type arguments to standardize.
# Convert arguments to c types.
c_this = py_to_c(this, c_type=Measure, type_name=None)
# Call library function.
lib_function = lib.opendp_measures__measure_distance_type
lib_function.argtypes = [Measure]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_this), ctypes.c_char_p))
return output
[docs]
def measure_type(
this: Measure
) -> str:
r"""Get the type of a `measure`.
:param this: The measure to retrieve the type from.
:type this: Measure
:rtype: str
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
# No type arguments to standardize.
# Convert arguments to c types.
c_this = py_to_c(this, c_type=Measure, type_name=None)
# Call library function.
lib_function = lib.opendp_measures__measure_type
lib_function.argtypes = [Measure]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_this), ctypes.c_char_p))
return output
[docs]
def smoothed_max_divergence(
T: RuntimeTypeDescriptor
) -> Measure:
r"""Construct an instance of the `SmoothedMaxDivergence` measure.
[smoothed_max_divergence in Rust documentation.](https://docs.rs/opendp/latest/opendp/measures/fn.smoothed_max_divergence.html)
:param T:
:type T: :py:ref:`RuntimeTypeDescriptor`
:rtype: Measure
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
# Standardize type arguments.
T = RuntimeType.parse(type_name=T)
# Convert arguments to c types.
c_T = py_to_c(T, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_measures__smoothed_max_divergence
lib_function.argtypes = [ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_T), Measure))
return output
[docs]
def user_divergence(
descriptor: str
) -> Measure:
r"""Construct a new UserDivergence.
Any two instances of an UserDivergence are equal if their string descriptors are equal.
:param descriptor: A string description of the privacy measure.
:type descriptor: str
:rtype: Measure
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
assert_features("honest-but-curious")
# No type arguments to standardize.
# Convert arguments to c types.
c_descriptor = py_to_c(descriptor, c_type=ctypes.c_char_p, type_name=String)
# Call library function.
lib_function = lib.opendp_measures__user_divergence
lib_function.argtypes = [ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_descriptor), Measure))
return output
[docs]
def zero_concentrated_divergence(
T: RuntimeTypeDescriptor
) -> Measure:
r"""Construct an instance of the `ZeroConcentratedDivergence` measure.
[zero_concentrated_divergence in Rust documentation.](https://docs.rs/opendp/latest/opendp/measures/fn.zero_concentrated_divergence.html)
:param T:
:type T: :py:ref:`RuntimeTypeDescriptor`
:rtype: Measure
:raises TypeError: if an argument's type differs from the expected type
:raises UnknownTypeException: if a type argument fails to parse
:raises OpenDPException: packaged error from the core OpenDP library
"""
# Standardize type arguments.
T = RuntimeType.parse(type_name=T)
# Convert arguments to c types.
c_T = py_to_c(T, c_type=ctypes.c_char_p)
# Call library function.
lib_function = lib.opendp_measures__zero_concentrated_divergence
lib_function.argtypes = [ctypes.c_char_p]
lib_function.restype = FfiResult
output = c_to_py(unwrap(lib_function(c_T), Measure))
return output