This documentation is for an old version of OpenDP.

The current release of OpenDP is v0.11.1.

Source code for opendp.polars

"""The ``polars`` module provides supporting utilities for making DP releases with the Polars library."""

from __future__ import annotations
from dataclasses import dataclass
import os
from typing import Literal, Tuple
from opendp._lib import lib_path
from opendp.mod import Domain, Measurement, assert_features
from opendp.domains import series_domain, lazyframe_domain, option_domain, atom_domain
from opendp.measurements import make_private_lazyframe


[docs] class DPExpr(object): def __init__(self, expr): """Apply a differentially private plugin to a Polars expression.""" self.expr = expr
[docs] def noise( self, scale: float | None = None, distribution: Literal["Laplace"] | Literal["Gaussian"] | None = None, ): """Add noise to the expression. If scale is None it is filled by `global_scale` in :py:func:`opendp.measurements.make_private_lazyframe`. If distribution is None, then the noise distribution will be chosen for you: * Pure-DP: Laplace noise, where `scale` == standard_deviation / sqrt(2) * zCDP: Gaussian noise, where `scale` == standard_devation :param scale: Scale parameter for the noise distribution. :param distribution: Either Laplace, Gaussian or None. """ from polars.plugins import register_plugin_function # type: ignore[import-not-found] return register_plugin_function( plugin_path=lib_path, function_name="noise", kwargs={"scale": scale, "distribution": distribution}, args=self.expr, is_elementwise=True, )
[docs] def laplace(self, scale: float | None = None): """Add Laplace noise to the expression. If scale is None it is filled by `global_scale` in :py:func:`opendp.measurements.make_private_lazyframe`. :param scale: Noise scale parameter for the Laplace distribution. `scale` == standard_deviation / sqrt(2). """ return self.noise(scale=scale, distribution="Laplace")
[docs] def gaussian(self, scale: float | None = None): """Add Gaussian noise to the expression. If scale is None it is filled by `global_scale` in :py:func:`opendp.measurements.make_private_lazyframe`. :param scale: Noise scale parameter for the Gaussian distribution. `scale` == standard_deviation. """ return self.noise(scale=scale, distribution="Gaussian")
[docs] def sum(self, bounds: Tuple[float, float], scale: float | None = None): """Compute the differentially private sum. If scale is None it is filled by `global_scale` in :py:func:`opendp.measurements.make_private_lazyframe`. :param bounds: The bounds of the input data. :param scale: Noise scale parameter for the Laplace distribution. `scale` == standard_deviation / sqrt(2). """ return self.expr.clip(*bounds).sum().dp.noise(scale)
[docs] def mean(self, bounds: Tuple[float, float], scale: float | None = None): """Compute the differentially private mean. The amount of noise to be added to the sum is determined by the scale. If scale is None it is filled by `global_scale` in :py:func:`opendp.measurements.make_private_lazyframe`. :param bounds: The bounds of the input data. :param scale: Noise scale parameter for the Laplace distribution. `scale` == standard_deviation / sqrt(2). """ import polars as pl # type: ignore[import-not-found] return self.expr.dp.sum(bounds, scale) / pl.len()
def _discrete_quantile_score(self, alpha: float, candidates: list[float]): """Score the utility of each candidate for representing the true quantile. Candidates closer to the true quantile are assigned scores closer to zero. Lower scores are better. :param alpha: a value in $[0, 1]$. Choose 0.5 for median :param candidates: Set of possible quantiles to evaluate the utility of. """ from polars.plugins import register_plugin_function # type: ignore[import-not-found] return register_plugin_function( plugin_path=lib_path, function_name="discrete_quantile_score", kwargs={"alpha": alpha, "candidates": candidates}, args=self.expr, returns_scalar=True, ) def _report_noisy_max_gumbel( self, optimize: Literal["min"] | Literal["max"], scale: float | None = None ): """Report the argmax or argmin after adding Gumbel noise. The scale calibrates the level of entropy when selecting an index. :param optimize: Distinguish between argmax and argmin. :param scale: Noise scale parameter for the Gumbel distribution. """ from polars.plugins import register_plugin_function # type: ignore[import-not-found] return register_plugin_function( plugin_path=lib_path, function_name="report_noisy_max_gumbel", kwargs={"optimize": optimize, "scale": scale}, args=self.expr, is_elementwise=True, ) def _index_candidates(self, candidates: list[float]): """Index into a candidate set. Typically used after `rnm_gumbel` to map selected indices to candidates. :param candidates: The values that each selected index corresponds to. """ from polars.plugins import register_plugin_function # type: ignore[import-not-found] return register_plugin_function( plugin_path=lib_path, function_name="index_candidates", kwargs={"candidates": candidates}, args=self.expr, is_elementwise=True, )
[docs] def quantile( self, alpha: float, candidates: list[float], scale: float | None = None ): """Compute a differentially private quantile. The scale calibrates the level of entropy when selecting a candidate. :param alpha: a value in $[0, 1]$. Choose 0.5 for median :param candidates: Potential quantiles to select from. :param scale: How much noise to add to the scores of candidate. """ dq_score = self.expr.dp._discrete_quantile_score(alpha, candidates) noisy_idx = dq_score.dp._report_noisy_max_gumbel("min", scale) return noisy_idx.dp._index_candidates(candidates)
[docs] def median(self, candidates: list[float], scale: float | None = None): """Compute a differentially private median. The scale calibrates the level of entropy when selecting a candidate. :param candidates: Potential quantiles to select from. :param scale: How much noise to add to the scores of candidate. """ return self.expr.dp.quantile(0.5, candidates, scale)
try: from polars.api import register_expr_namespace # type: ignore[import-not-found] register_expr_namespace("dp")(DPExpr) except ImportError: pass
[docs] class OnceFrame(object): def __init__(self, queryable): """OnceFrame is a Polars LazyFrame that may only be collected into a DataFrame once. The APIs on this class mimic those that can be found in Polars. Differentially private guarantees on a given LazyFrame require the LazyFrame to be evaluated at most once. The purpose of this class is to protect against repeatedly evaluating the LazyFrame. """ self.queryable = queryable
[docs] def collect(self): """Collects a DataFrame from a OnceFrame, exhausting the OnceFrame.""" from opendp._data import onceframe_collect return onceframe_collect(self.queryable)
[docs] def lazy(self): """Extracts a LazyFrame from a OnceFrame, circumventing protections against multiple evaluations. Each collection consumes the entire allocated privacy budget. To remain DP at the advertised privacy level, only collect the LazyFrame once. **Features:** * `honest-but-curious` - LazyFrames can be collected an unlimited number of times. """ from opendp._data import onceframe_lazy assert_features("honest-but-curious") return onceframe_lazy(self.queryable)
def _lazyframe_domain_from_schema(schema) -> Domain: """Builds the broadest possible LazyFrameDomain that matches a given LazyFrame schema.""" return lazyframe_domain( [_series_domain_from_field(field) for field in schema.items()] ) def _series_domain_from_field(field) -> Domain: """Builds the broadest possible SeriesDomain that matches a given field.""" import polars as pl name, dtype = field T = { pl.UInt32: "u32", pl.UInt64: "u64", pl.Int8: "i8", pl.Int16: "i16", pl.Int32: "i32", pl.Int64: "i64", pl.Float32: "f32", pl.Float64: "f64", pl.Boolean: "bool", pl.String: "String", }.get(dtype) if T is None: raise ValueError(f"unrecognized dtype: {dtype}") element_domain = option_domain(atom_domain(T=T, nullable=T in {"f32", "f64"})) return series_domain(name, element_domain) _LAZY_EXECUTION_METHODS = { "collect", "collect_async", "describe", "sink_parquet", "sink_ipc", "sink_csv", "sink_ndjson", "fetch", } # In our DataFrame APIs, we only need to make a few small adjustments to Polars LazyFrames. # Therefore if Polars is installed, LazyFrameQuery subclasses LazyFrame. # # # Compatibility with MyPy # If Polars is not installed, then a dummy LazyFrameQuery class is declared. # This way other modules can import and include LazyFrameQuery in static type annotations. # MyPy type-checks based on the first definition of a class, # so the code is written such that the first definition of the class is the real thing. # # # Compatibility with Pylance # If declared in branching code, Pylance may only provide code analysis based on the dummy class. # Therefore preference is given to the real class via a try-except block. # # # Compatibility with Sphinx # Even when Polars is installed, Sphinx fails to find the reference to the Polars LazyFrame class. # I think this is because Polars is not a direct dependency. # Therefore the following code uses OPENDP_HEADLESS to get Sphinx to document the dummy class instead. # This may also be preferred behavior: # only the changes we make to the Polars LazyFrame API are documented, not the entire LazyFrame API. try: if os.environ.get("OPENDP_HEADLESS"): raise ImportError( "Sphinx always fails to find a reference to LazyFrame. Falling back to dummy class." ) from polars.lazyframe.frame import LazyFrame as _LazyFrame # type: ignore[import-not-found] from polars.lazyframe.group_by import LazyGroupBy as _LazyGroupBy # type: ignore[import-not-found] class LazyFrameQuery(_LazyFrame): """LazyFrameQuery mimics a Polars LazyFrame, but makes a few additions and changes as documented below.""" def __init__(self, lf_plan: _LazyFrame | _LazyGroupBy, query): self._lf_plan = lf_plan self._query = query # do not initialize super() because inheritance is only used to mimic the API surface def __getattribute__(self, name): # Re-route all possible attribute access to self._lf_plan. # __getattribute__ is necessary because __getattr__ cannot intercept calls to inherited methods # We keep the query plan void of data anyways, # so running the computation doesn't affect privacy. # This doesn't have to cover all possible APIs that may execute the query, # but it does give a simple sanity check for the obvious cases. if name in _LAZY_EXECUTION_METHODS: raise ValueError("You must call `.release()` before executing a query.") lf_plan = object.__getattribute__(self, "_lf_plan") query = object.__getattribute__(self, "_query") attr = getattr(lf_plan, name, None) # If not a valid attribute on self._lf_plan, then don't re-route if attr is None: return object.__getattribute__(self, name) # any callable attributes (like .with_columns or .select) will now also wrap their outputs in a LazyFrameQuery if callable(attr): def wrap(*args, **kwargs): out = attr(*args, **kwargs) # re-wrap any lazy outputs to keep the conveniences afforded by this class if isinstance(out, (_LazyGroupBy, _LazyFrame)): return LazyFrameQuery(out, query) return out return wrap return attr def resolve(self) -> Measurement: """Resolve the query into a measurement.""" from opendp.context import PartialChain # access attributes of self without getting intercepted by Self.__getattribute__ lf_plan = object.__getattribute__(self, "_lf_plan") query = object.__getattribute__(self, "_query") input_domain, input_metric = query._chain # create an updated query and then resolve it into a measurement return query.new_with( chain=PartialChain( lambda s: make_private_lazyframe( input_domain=input_domain, input_metric=input_metric, output_measure=query._output_measure, lazyframe=lf_plan, global_scale=s, ) ) ).resolve() def release(self) -> OnceFrame: """Release the query. The query must be part of a context.""" query = object.__getattribute__(self, "_query") resolve = object.__getattribute__(self, "resolve") return query._context(resolve()) # type: ignore[misc] except ImportError: ERR_MSG = "LazyFrameQuery depends on Polars: `pip install 'opendp[polars]'`."
[docs] class LazyFrameQuery(object): # type: ignore[no-redef] """LazyFrameQuery mimics a Polars LazyFrame, but makes a few additions and changes as documented below."""
[docs] def resolve(self) -> Measurement: """Resolve the query into a measurement.""" raise ImportError(ERR_MSG)
[docs] def release(self) -> OnceFrame: """Release the query. The query must be part of a context.""" raise ImportError(ERR_MSG)
[docs] @dataclass class Margin(object): public_info: Literal["keys"] | Literal["lengths"] | None = None """Identifies properties of grouped data that are considered public information. * "keys" designates that keys are not protected * "lengths" designates that both keys and partition lengths are not protected """ max_partition_length: int | None = None """An upper bound on the number of records in any one partition. If you don't know how many records are in the data, you can specify a very loose upper bound. This is used to resolve issues raised in [CSVW22 Widespread Underestimation of Sensitivity...](https://arxiv.org/pdf/2207.10635.pdf) """ max_num_partitions: int | None = None """An upper bound on the number of distinct partitions.""" max_partition_contributions: int | None = None """The greatest number of records an individual may contribute to any one partition. This can significantly reduce the sensitivity of grouped queries under zero-Concentrated DP. """ max_influenced_partitions: int | None = None """The greatest number of partitions any one individual can contribute to."""