This documentation is for an old version of OpenDP.

The current release of OpenDP is v0.11.1.

Source code for opendp.typing

'''
The ``typing`` module provides utilities that bridge between Python and Rust types.
OpenDP relies on precise descriptions of data types to make its security guarantees:
These are more natural in Rust with its fine-grained type system,
but they may feel out of place in Python. These utilities try to fill that gap.

For more context, see :ref:`typing in the User Guide <typing-user-guide>`.

For convenience, all the functions of this module are also available from :py:mod:`opendp.prelude`.
We suggest importing under the conventional name ``dp``:

.. code:: python

    >>> import opendp.prelude as dp
'''
from __future__ import annotations
import typing
from collections.abc import Hashable
from typing import Optional, Union, Any, Type, _GenericAlias # type: ignore[attr-defined]
from types import GenericAlias
import re

from opendp.mod import Function, UnknownTypeException, Measurement, Transformation, Domain, Metric, Measure
from opendp._lib import ATOM_EQUIVALENCE_CLASSES, import_optional_dependency


ELEMENTARY_TYPES: dict[Any, str] = {
    int: 'i32',
    float: 'f64',
    str: 'String',
    bool: 'bool',
    Measurement: 'AnyMeasurementPtr',
    Transformation: 'AnyTransformationPtr'
}
try:
    np = import_optional_dependency('numpy')
    # https://numpy.org/doc/stable/reference/arrays.scalars.html#sized-aliases
    ELEMENTARY_TYPES.update({  # pragma: no cover
        # np.bytes_: '&[u8]',  # np.string_ # not used in OpenDP
        np.str_: 'String',  # np.unicode_
        np.bool_: 'bool',  # np.bool_
        np.int8: 'i8',  # np.byte
        np.int16: 'i16',  # np.short
        np.int32: 'i32',  # np.intc
        np.int64: 'i64',  # np.int_
        np.longlong: 'i128',
        np.uint8: 'u8',  # np.ubyte
        np.uint16: 'u16',  # np.ushort
        np.uint32: 'u32',  # np.uintc
        np.uint64: 'u64',
        np.ulonglong: 'u128',
        # np.intp: 'isize',  # not used in OpenDP
        # np.uintp: 'usize', # an alias for one of np.uint* that would overwrite the respective key
        # np.float16: 'f16',  # not used in OpenDP
        np.float32: 'f32',
        np.float64: 'f64',  # np.double, np.float_
    })
except ImportError:
    np = None # type: ignore[assignment]

INTEGER_TYPES = {"i8", "i16", "i32", "i64", "i128", "u8", "u16", "u32", "u64", "u128", "usize"}
NUMERIC_TYPES = INTEGER_TYPES | {"f32", "f64"}
HASHABLE_TYPES = INTEGER_TYPES | {"bool", "String"}
PRIMITIVE_TYPES = NUMERIC_TYPES | {"bool", "String"}


# all ways of providing type information
RuntimeTypeDescriptor = Union[
    "RuntimeType",  # as the normalized type -- ChangeOneDistance; RuntimeType.parse("i32")
    str,  # plaintext string in terms of Rust types -- "Vec<i32>"
    Type[Union[list[Any], tuple[Any, Any], float, str, bool]],  # using the Python type class itself -- int, float
    tuple["RuntimeTypeDescriptor", ...],  # shorthand for tuples -- (float, "f64"); (ChangeOneDistance, list[int])
    _GenericAlias, # a Python type hint from the std typing module -- List[int]
    GenericAlias, # a Python type hint from the std types module -- list[int]
]


[docs] def set_default_int_type(T: RuntimeTypeDescriptor) -> None: """Set the default integer type throughout the library. This function is particularly useful when building computation chains with constructors. When you build a computation chain, any unspecified integer types default to this int type. The default int type is i32. :params T: must be one of [u8, u16, u32, u64, usize, i8, i16, i32, i64] :type T: :ref:`RuntimeTypeDescriptor` """ equivalence_class = ATOM_EQUIVALENCE_CLASSES[ELEMENTARY_TYPES[int]] T = RuntimeType.parse(T) assert T in equivalence_class, f"T must be one of {equivalence_class}" ATOM_EQUIVALENCE_CLASSES[T] = ATOM_EQUIVALENCE_CLASSES.pop(ELEMENTARY_TYPES[int]) # type: ignore[index] ELEMENTARY_TYPES[int] = T # type: ignore[assignment]
[docs] def set_default_float_type(T: RuntimeTypeDescriptor) -> None: # pragma: no cover """Set the default float type throughout the library. This function is particularly useful when building computation chains with constructors. When you build a computation chain, any unspecified float types default to this float type. The default float type is f64. :params T: must be one of [f32, f64] :type T: :ref:`RuntimeTypeDescriptor` """ equivalence_class = ATOM_EQUIVALENCE_CLASSES[ELEMENTARY_TYPES[float]] T = RuntimeType.parse(T) assert T in equivalence_class, f"T must be a float type in {equivalence_class}" ATOM_EQUIVALENCE_CLASSES[T] = ATOM_EQUIVALENCE_CLASSES.pop(ELEMENTARY_TYPES[float]) # type: ignore[index] ELEMENTARY_TYPES[float] = T # type: ignore[assignment]
[docs] class RuntimeType(object): """Utility for validating, manipulating, inferring and parsing/normalizing type information. """ origin: str args: list[Union["RuntimeType", str]] def __init__(self, origin, args=None): if not isinstance(origin, str): raise ValueError("origin must be a string", origin) self.origin = origin self.args = args or [] def __eq__(self, other): if isinstance(other, str): other = RuntimeType.parse(other) if not isinstance(other, RuntimeType): return False return self.origin == other.origin and self.args == other.args def __repr__(self): result = self.origin or '' if result == 'Tuple': return f'({", ".join(map(str, self.args))})' if self.args: result += f'<{", ".join(map(str, self.args))}>' return result def __hash__(self) -> int: return hash(str(self)) # pragma: no cover
[docs] @classmethod def parse(cls, type_name: RuntimeTypeDescriptor, generics: Optional[list[str]] = None) -> Union["RuntimeType", str]: """Parse type descriptor into a normalized Rust type. Type descriptor may be expressed as: - Python type hints from std typing module - plaintext Rust type strings for setting specific bit depth - Python type class - one of {int, str, float, bool} - tuple of type information - for example: (float, float) :param type_name: type specifier :param generics: For internal use. List of type names to consider generic when parsing. :type: list[str] :return: Normalized type. If the type has subtypes, returns a RuntimeType, else a str. :rtype: Union["RuntimeType", str] :raises UnknownTypeException: if `type_name` fails to parse :examples: >>> import opendp.prelude as dp >>> dp.RuntimeType.parse(int) 'i32' >>> dp.RuntimeType.parse("i32") 'i32' >>> dp.RuntimeType.parse(L1Distance[int]) L1Distance<i32> >>> dp.RuntimeType.parse(L1Distance["f32"]) L1Distance<f32> """ generics = generics or [] if isinstance(type_name, RuntimeType): return type_name # parse type hints from the typing module hinted_type = None if isinstance(type_name, _GenericAlias): hinted_type = typing.get_origin(type_name), typing.get_args(type_name) if isinstance(type_name, GenericAlias): # type: ignore[attr-defined] hinted_type = type_name.__origin__, type_name.__args__ # type: ignore[attr-defined] # pragma: no cover if hinted_type: origin, args = hinted_type args = [RuntimeType.parse(v, generics=generics) for v in args] or None # type: ignore[assignment] if origin == tuple: origin = 'Tuple' elif origin == list: origin = 'Vec' elif origin == dict: origin = 'HashMap' return RuntimeType(RuntimeType.parse(origin, generics=generics), args) # parse a tuple of types-- (int, "f64"); (list[int], (int, bool)) if isinstance(type_name, tuple): return RuntimeType('Tuple', list(cls.parse(v, generics=generics) for v in type_name)) # parse a string-- "Vec<f32>", if isinstance(type_name, str): if "AllDomain" in type_name: # pragma: no cover import warnings warnings.warn("AllDomain is deprecated. Use AtomDomain instead.", DeprecationWarning) type_name = type_name.replace("AllDomain", "AtomDomain") type_name = type_name.strip() if type_name in generics: return GenericType(type_name) if type_name.startswith('(') and type_name.endswith(')'): return RuntimeType('Tuple', cls._parse_args(type_name[1:-1], generics=generics)) start, end = type_name.find('<'), type_name.rfind('>') # attempt to upgrade strings to the metric/measure instance origin = type_name[:start] if 0 < start else type_name closeness: RuntimeType = { # type: ignore[assignment] 'ChangeOneDistance': ChangeOneDistance, 'SymmetricDistance': SymmetricDistance, 'AbsoluteDistance': AbsoluteDistance, 'L1Distance': L1Distance, 'L2Distance': L2Distance, 'MaxDivergence': MaxDivergence, 'SmoothedMaxDivergence': SmoothedMaxDivergence }.get(origin) if closeness is not None: if isinstance(closeness, (SensitivityMetric, PrivacyMeasure)): return closeness[cls._parse_args(type_name[start + 1: end], generics=generics)[0]] return closeness domain = { 'AtomDomain': AtomDomain, 'VectorDomain': VectorDomain, 'MapDomain': MapDomain, 'OptionDomain': OptionDomain, }.get(origin) if domain is not None: return domain[cls._parse_args(type_name[start + 1: end], generics=generics)[0]] if 0 < start < end < len(type_name): return RuntimeType(origin, args=cls._parse_args(type_name[start + 1: end], generics=generics)) if start == end < 0: if type_name == "int": return ELEMENTARY_TYPES[int] if type_name == "float": return ELEMENTARY_TYPES[float] return type_name if isinstance(type_name, Hashable) and type_name in ELEMENTARY_TYPES: return ELEMENTARY_TYPES[type_name] if type_name == tuple: raise UnknownTypeException("non-parameterized argument") raise UnknownTypeException(f"unable to parse type: {type_name}")
@classmethod def _parse_args(cls, args, generics: Optional[list[str]] = None): import re return [cls.parse(v, generics=generics) for v in re.split(r",\s*(?![^()<>]*\))", args)]
[docs] @classmethod def infer(cls, public_example: Any, py_object=False) -> Union["RuntimeType", str]: """Infer the normalized type from a public example. :param public_example: data used to infer the type :param py_object: return "ExtrinsicObject" when type not recognized, instead of error :return: Normalized type. If the type has subtypes, returns a RuntimeType, else a str. :rtype: Union["RuntimeType", str] :raises UnknownTypeException: if inference fails on `public_example` :examples: >>> import opendp.prelude as dp >>> assert dp.RuntimeType.infer(23) == "i32" >>> assert dp.RuntimeType.infer(12.) == "f64" >>> assert dp.RuntimeType.infer(["A", "B"]) == "Vec<String>" >>> assert dp.RuntimeType.infer((12., True, "A")) == "(f64, bool,String)" # eq doesn't care about whitespace >>> print(dp.RuntimeType.infer([])) Traceback (most recent call last): ... opendp.mod.UnknownTypeException: attempted to create a type_name with an unknown type: cannot infer atomic type when empty """ if type(public_example) in ELEMENTARY_TYPES: return ELEMENTARY_TYPES[type(public_example)] if isinstance(public_example, (Domain, Metric, Measure)): return RuntimeType.parse(public_example.type) # pragma: no cover pl = import_optional_dependency("polars", raise_error=False) if pl is not None: if isinstance(public_example, pl.LazyFrame): return LazyFrame if isinstance(public_example, pl.DataFrame): return DataFrame if isinstance(public_example, pl.Series): return Series if isinstance(public_example, pl.Expr): return Expr if isinstance(public_example, tuple): return RuntimeType('Tuple', [cls.infer(e, py_object) for e in public_example]) def infer_homogeneous(value): types = {cls.infer(v, py_object=py_object) for v in value} if len(types) == 0: return UnknownType("cannot infer atomic type when empty") # pragma: no cover if len(types) == 1: return next(iter(types)) if py_object: # pragma: no cover return "ExtrinsicObject" raise TypeError(f"elements must be homogeneously typed. Found {types}") if isinstance(public_example, list): return RuntimeType('Vec', [infer_homogeneous(public_example)]) if np is not None and isinstance(public_example, np.ndarray): if public_example.ndim == 0: # pragma: no cover return cls.infer(public_example.item(), py_object) if public_example.ndim == 1: # pragma: no cover inner_type = ELEMENTARY_TYPES.get(public_example.dtype.type) if inner_type is None: raise UnknownTypeException(f"Unknown numpy array dtype: {public_example.dtype.type}") return RuntimeType('Vec', [inner_type]) raise UnknownTypeException("arrays with greater than one axis are not yet supported") if isinstance(public_example, dict): return RuntimeType('HashMap', [ infer_homogeneous(public_example.keys()), infer_homogeneous(public_example.values()) ]) if isinstance(public_example, Measurement): # pragma: no cover return "AnyMeasurementPtr" if isinstance(public_example, Transformation): # pragma: no cover return "AnyTransformationPtr" if public_example is None: # pragma: no cover return RuntimeType('Option', [UnknownType("Constructed Option from a None variant")]) if callable(public_example): # pragma: no cover return "CallbackFn" if py_object: # pragma: no cover return "ExtrinsicObject" raise UnknownTypeException(type(public_example))
[docs] @classmethod def parse_or_infer( cls, type_name: RuntimeTypeDescriptor | None = None, public_example: Any = None, generics: Optional[list[str]] = None ) -> Union["RuntimeType", str]: """If type_name is supplied, normalize it. Otherwise, infer the normalized type from a public example. :param type_name: type specifier. See RuntimeType.parse for documentation on valid inputs :param public_example: data used to infer the type :return: Normalized type. If the type has subtypes, returns a RuntimeType, else a str. :rtype: Union["RuntimeType", str] :param generics: For internal use. List of type names to consider generic when parsing. :type: list[str] :raises ValueError: if `type_name` fails to parse :raises UnknownTypeException: if inference fails on `public_example` or no args are supplied """ if type_name is not None: return cls.parse(type_name, generics) if public_example is not None: return cls.infer(public_example) raise UnknownTypeException("either type_name or public_example must be passed")
[docs] def substitute(self: Union["RuntimeType", str], **kwargs): if isinstance(self, GenericType): return kwargs.get(self.origin, self) if isinstance(self, RuntimeType): return RuntimeType(self.origin, self.args and [RuntimeType.substitute(arg, **kwargs) for arg in self.args]) return self
[docs] class GenericType(RuntimeType): def __repr__(self): raise UnknownTypeException(f"attempted to create a type_name with an unknown generic: {self.origin}")
[docs] class UnknownType(RuntimeType): """Indicator for a type that cannot be inferred. Typically the atomic type of an empty list. RuntimeTypes containing UnknownType cannot be used in FFI """ origin: None # type: ignore[assignment] args: None # type: ignore[assignment] def __init__(self, reason): # pragma: no cover self.origin = None self.args = None self.reason = reason def __repr__(self): raise UnknownTypeException(f"attempted to create a type_name with an unknown type: {self.reason}")
SymmetricDistance = 'SymmetricDistance' InsertDeleteDistance = 'InsertDeleteDistance' ChangeOneDistance = 'ChangeOneDistance' HammingDistance = 'HammingDistance' DiscreteDistance = 'DiscreteDistance'
[docs] class SensitivityMetric(RuntimeType): """All sensitivity RuntimeTypes inherit from SensitivityMetric. Provides static type checking in user-code for sensitivity metrics and a getitem interface like stdlib typing. """ def __getitem__(self, associated_type): return SensitivityMetric(self.origin, [self.parse(type_name=associated_type)])
AbsoluteDistance: SensitivityMetric = SensitivityMetric('AbsoluteDistance') L1Distance: SensitivityMetric = SensitivityMetric('L1Distance') L2Distance: SensitivityMetric = SensitivityMetric('L2Distance')
[docs] class PrivacyMeasure(RuntimeType): """All measure RuntimeTypes inherit from PrivacyMeasure. Provides static type checking in user-code for privacy measures and a getitem interface like stdlib typing. """ def __getitem__(self, associated_type): return PrivacyMeasure(self.origin, [self.parse(type_name=associated_type)])
MaxDivergence: PrivacyMeasure = PrivacyMeasure('MaxDivergence') SmoothedMaxDivergence: PrivacyMeasure = PrivacyMeasure('SmoothedMaxDivergence') FixedSmoothedMaxDivergence: PrivacyMeasure = PrivacyMeasure('FixedSmoothedMaxDivergence') ZeroConcentratedDivergence: PrivacyMeasure = PrivacyMeasure('ZeroConcentratedDivergence')
[docs] class Carrier(RuntimeType): def __getitem__(self, subdomains): if not isinstance(subdomains, tuple): subdomains = (subdomains,) return Carrier(self.origin, [self.parse(type_name=subdomain) for subdomain in subdomains])
Vec: Carrier = Carrier('Vec') HashMap: Carrier = Carrier('HashMap') i8: str = 'i8' i16: str = 'i16' i32: str = 'i32' i64: str = 'i64' i128: str = 'i128' isize: str = 'isize' u8: str = 'u8' u16: str = 'u16' u32: str = 'u32' u64: str = 'u64' u128: str = 'u128' usize: str = 'usize' f32: str = 'f32' f64: str = 'f64' String: str = 'String' LazyFrame: str = 'LazyFrame' DataFrame: str = 'DataFrame' Series: str = 'Series' Expr: str = 'Expr' AnyMeasurementPtr: str = 'AnyMeasurementPtr' AnyTransformationPtr: str = 'AnyTransformationPtr' LazyFrameDomain: str = 'LazyFrame' SeriesDomain: str = 'SeriesDomain'
[docs] class DomainDescriptor(RuntimeType): def __getitem__(self, subdomain): if not isinstance(subdomain, tuple): subdomain = (subdomain,) return DomainDescriptor(self.origin, [self.parse(type_name=sub_i) for sub_i in subdomain]) def __call__(self, *args, **kwargs): ''' >>> FakeDomain = DomainDescriptor('FakeDomain') >>> FakeDomain(int) Traceback (most recent call last): ... Exception: Use dp.fake_domain to construst a new FakeDomain ''' # https://stackoverflow.com/a/12867228/10727889 lc_name = re.sub('(?!^)([A-Z])', r'_\1', self.origin).lower() raise Exception(f'Use dp.{lc_name} to construst a new {self.origin}')
AtomDomain: DomainDescriptor = DomainDescriptor('AtomDomain') VectorDomain: DomainDescriptor = DomainDescriptor('VectorDomain') OptionDomain: DomainDescriptor = DomainDescriptor('OptionDomain') SizedDomain: DomainDescriptor = DomainDescriptor('SizedDomain') MapDomain: DomainDescriptor = DomainDescriptor('MapDomain')
[docs] def get_atom(type_name): type_name = RuntimeType.parse(type_name) while isinstance(type_name, RuntimeType): if isinstance(type_name, (UnknownType, GenericType)): return type_name = type_name.args[0] return type_name
[docs] def get_atom_or_infer(type_name: Union[RuntimeType, str], example): return get_atom(type_name) or RuntimeType.infer(example)
[docs] def get_first(value): if value is None or not len(value): return None return next(iter(value))
[docs] def parse_or_infer(type_name: RuntimeTypeDescriptor | None, example) -> Union[RuntimeType, str]: return RuntimeType.parse_or_infer(type_name, example)
[docs] def pass_through(value: Any) -> Any: return value
[docs] def get_dependencies(value: Union[Measurement, Transformation, Function]) -> Any: return getattr(value, "_dependencies", None)
[docs] def get_dependencies_iterable(value: list[Union[Measurement, Transformation, Function]]) -> list[Any]: return list(map(get_dependencies, value))
[docs] def get_carrier_type(value: Domain) -> Union[RuntimeType, str]: return value.carrier_type
[docs] def get_type(value): return value.type
[docs] def get_value_type(type_name): return RuntimeType.parse(type_name).args[1] # type: ignore[union-attr]
[docs] def get_distance_type(value: Union[Metric, Measure]) -> Union[RuntimeType, str]: return value.distance_type