'''
The ``typing`` module provides utilities that bridge between Python and Rust types.
OpenDP relies on precise descriptions of data types to make its security guarantees:
These are more natural in Rust with its fine-grained type system,
but they may feel out of place in Python. These utilities try to fill that gap.
For more context, see :ref:`typing in the User Guide <typing-user-guide>`.
For convenience, all the functions of this module are also available from :py:mod:`opendp.prelude`.
We suggest importing under the conventional name ``dp``:
.. code:: python
>>> import opendp.prelude as dp
'''
from __future__ import annotations
import typing
from collections.abc import Hashable
from typing import Optional, Union, Any, Type, _GenericAlias # type: ignore[attr-defined]
from types import GenericAlias
import re
from opendp.mod import Function, UnknownTypeException, Measurement, Transformation, Domain, Metric, Measure
from opendp._lib import ATOM_EQUIVALENCE_CLASSES, import_optional_dependency
ELEMENTARY_TYPES: dict[Any, str] = {
int: 'i32',
float: 'f64',
str: 'String',
bool: 'bool',
Measurement: 'AnyMeasurementPtr',
Transformation: 'AnyTransformationPtr'
}
try:
np = import_optional_dependency('numpy')
# https://numpy.org/doc/stable/reference/arrays.scalars.html#sized-aliases
ELEMENTARY_TYPES.update({ # pragma: no cover
# np.bytes_: '&[u8]', # np.string_ # not used in OpenDP
np.str_: 'String', # np.unicode_
np.bool_: 'bool', # np.bool_
np.int8: 'i8', # np.byte
np.int16: 'i16', # np.short
np.int32: 'i32', # np.intc
np.int64: 'i64', # np.int_
np.longlong: 'i128',
np.uint8: 'u8', # np.ubyte
np.uint16: 'u16', # np.ushort
np.uint32: 'u32', # np.uintc
np.uint64: 'u64',
np.ulonglong: 'u128',
# np.intp: 'isize', # not used in OpenDP
# np.uintp: 'usize', # an alias for one of np.uint* that would overwrite the respective key
# np.float16: 'f16', # not used in OpenDP
np.float32: 'f32',
np.float64: 'f64', # np.double, np.float_
})
except ImportError:
np = None # type: ignore[assignment]
INTEGER_TYPES = {"i8", "i16", "i32", "i64", "i128", "u8", "u16", "u32", "u64", "u128", "usize"}
NUMERIC_TYPES = INTEGER_TYPES | {"f32", "f64"}
HASHABLE_TYPES = INTEGER_TYPES | {"bool", "String"}
PRIMITIVE_TYPES = NUMERIC_TYPES | {"bool", "String"}
# all ways of providing type information
RuntimeTypeDescriptor = Union[
"RuntimeType", # as the normalized type -- ChangeOneDistance; RuntimeType.parse("i32")
str, # plaintext string in terms of Rust types -- "Vec<i32>"
Type[Union[list[Any], tuple[Any, Any], float, str, bool]], # using the Python type class itself -- int, float
tuple["RuntimeTypeDescriptor", ...], # shorthand for tuples -- (float, "f64"); (ChangeOneDistance, list[int])
_GenericAlias, # a Python type hint from the std typing module -- List[int]
GenericAlias, # a Python type hint from the std types module -- list[int]
]
[docs]
def set_default_int_type(T: RuntimeTypeDescriptor) -> None:
"""Set the default integer type throughout the library.
This function is particularly useful when building computation chains with constructors.
When you build a computation chain, any unspecified integer types default to this int type.
The default int type is i32.
:params T: must be one of [u8, u16, u32, u64, usize, i8, i16, i32, i64]
:type T: :ref:`RuntimeTypeDescriptor`
"""
equivalence_class = ATOM_EQUIVALENCE_CLASSES[ELEMENTARY_TYPES[int]]
T = RuntimeType.parse(T)
assert T in equivalence_class, f"T must be one of {equivalence_class}"
ATOM_EQUIVALENCE_CLASSES[T] = ATOM_EQUIVALENCE_CLASSES.pop(ELEMENTARY_TYPES[int]) # type: ignore[index]
ELEMENTARY_TYPES[int] = T # type: ignore[assignment]
[docs]
def set_default_float_type(T: RuntimeTypeDescriptor) -> None: # pragma: no cover
"""Set the default float type throughout the library.
This function is particularly useful when building computation chains with constructors.
When you build a computation chain, any unspecified float types default to this float type.
The default float type is f64.
:params T: must be one of [f32, f64]
:type T: :ref:`RuntimeTypeDescriptor`
"""
equivalence_class = ATOM_EQUIVALENCE_CLASSES[ELEMENTARY_TYPES[float]]
T = RuntimeType.parse(T)
assert T in equivalence_class, f"T must be a float type in {equivalence_class}"
ATOM_EQUIVALENCE_CLASSES[T] = ATOM_EQUIVALENCE_CLASSES.pop(ELEMENTARY_TYPES[float]) # type: ignore[index]
ELEMENTARY_TYPES[float] = T # type: ignore[assignment]
[docs]
class RuntimeType(object):
"""Utility for validating, manipulating, inferring and parsing/normalizing type information.
"""
origin: str
args: list[Union["RuntimeType", str]]
def __init__(self, origin, args=None):
if not isinstance(origin, str):
raise ValueError("origin must be a string", origin)
self.origin = origin
self.args = args or []
def __eq__(self, other):
if isinstance(other, str):
other = RuntimeType.parse(other)
if not isinstance(other, RuntimeType):
return False
return self.origin == other.origin and self.args == other.args
def __repr__(self):
result = self.origin or ''
if result == 'Tuple':
return f'({", ".join(map(str, self.args))})'
if self.args:
result += f'<{", ".join(map(str, self.args))}>'
return result
def __hash__(self) -> int:
return hash(str(self)) # pragma: no cover
[docs]
@classmethod
def parse(cls, type_name: RuntimeTypeDescriptor, generics: Optional[list[str]] = None) -> Union["RuntimeType", str]:
"""Parse type descriptor into a normalized Rust type.
Type descriptor may be expressed as:
- Python type hints from std typing module
- plaintext Rust type strings for setting specific bit depth
- Python type class - one of {int, str, float, bool}
- tuple of type information - for example: (float, float)
:param type_name: type specifier
:param generics: For internal use. List of type names to consider generic when parsing.
:type: list[str]
:return: Normalized type. If the type has subtypes, returns a RuntimeType, else a str.
:rtype: Union["RuntimeType", str]
:raises UnknownTypeException: if `type_name` fails to parse
:examples:
>>> import opendp.prelude as dp
>>> dp.RuntimeType.parse(int)
'i32'
>>> dp.RuntimeType.parse("i32")
'i32'
>>> dp.RuntimeType.parse(L1Distance[int])
L1Distance<i32>
>>> dp.RuntimeType.parse(L1Distance["f32"])
L1Distance<f32>
"""
generics = generics or []
if isinstance(type_name, RuntimeType):
return type_name
# parse type hints from the typing module
hinted_type = None
if isinstance(type_name, _GenericAlias):
hinted_type = typing.get_origin(type_name), typing.get_args(type_name)
if isinstance(type_name, GenericAlias): # type: ignore[attr-defined]
hinted_type = type_name.__origin__, type_name.__args__ # type: ignore[attr-defined] # pragma: no cover
if hinted_type:
origin, args = hinted_type
args = [RuntimeType.parse(v, generics=generics) for v in args] or None # type: ignore[assignment]
if origin == tuple:
origin = 'Tuple'
elif origin == list:
origin = 'Vec'
elif origin == dict:
origin = 'HashMap'
return RuntimeType(RuntimeType.parse(origin, generics=generics), args)
# parse a tuple of types-- (int, "f64"); (list[int], (int, bool))
if isinstance(type_name, tuple):
return RuntimeType('Tuple', list(cls.parse(v, generics=generics) for v in type_name))
# parse a string-- "Vec<f32>",
if isinstance(type_name, str):
if "AllDomain" in type_name: # pragma: no cover
import warnings
warnings.warn("AllDomain is deprecated. Use AtomDomain instead.", DeprecationWarning)
type_name = type_name.replace("AllDomain", "AtomDomain")
type_name = type_name.strip()
if type_name in generics:
return GenericType(type_name)
if type_name.startswith('(') and type_name.endswith(')'):
return RuntimeType('Tuple', cls._parse_args(type_name[1:-1], generics=generics))
start, end = type_name.find('<'), type_name.rfind('>')
# attempt to upgrade strings to the metric/measure instance
origin = type_name[:start] if 0 < start else type_name
closeness: RuntimeType = { # type: ignore[assignment]
'ChangeOneDistance': ChangeOneDistance,
'SymmetricDistance': SymmetricDistance,
'AbsoluteDistance': AbsoluteDistance,
'L1Distance': L1Distance,
'L2Distance': L2Distance,
'MaxDivergence': MaxDivergence,
'SmoothedMaxDivergence': SmoothedMaxDivergence
}.get(origin)
if closeness is not None:
if isinstance(closeness, (SensitivityMetric, PrivacyMeasure)):
return closeness[cls._parse_args(type_name[start + 1: end], generics=generics)[0]]
return closeness
domain = {
'AtomDomain': AtomDomain,
'VectorDomain': VectorDomain,
'MapDomain': MapDomain,
'OptionDomain': OptionDomain,
}.get(origin)
if domain is not None:
return domain[cls._parse_args(type_name[start + 1: end], generics=generics)[0]]
if 0 < start < end < len(type_name):
return RuntimeType(origin, args=cls._parse_args(type_name[start + 1: end], generics=generics))
if start == end < 0:
if type_name == "int":
return ELEMENTARY_TYPES[int]
if type_name == "float":
return ELEMENTARY_TYPES[float]
return type_name
if isinstance(type_name, Hashable) and type_name in ELEMENTARY_TYPES:
return ELEMENTARY_TYPES[type_name]
if type_name == tuple:
raise UnknownTypeException("non-parameterized argument")
raise UnknownTypeException(f"unable to parse type: {type_name}")
@classmethod
def _parse_args(cls, args, generics: Optional[list[str]] = None):
import re
return [cls.parse(v, generics=generics) for v in re.split(r",\s*(?![^()<>]*\))", args)]
[docs]
@classmethod
def infer(cls, public_example: Any, py_object=False) -> Union["RuntimeType", str]:
"""Infer the normalized type from a public example.
:param public_example: data used to infer the type
:param py_object: return "ExtrinsicObject" when type not recognized, instead of error
:return: Normalized type. If the type has subtypes, returns a RuntimeType, else a str.
:rtype: Union["RuntimeType", str]
:raises UnknownTypeException: if inference fails on `public_example`
:examples:
>>> import opendp.prelude as dp
>>> assert dp.RuntimeType.infer(23) == "i32"
>>> assert dp.RuntimeType.infer(12.) == "f64"
>>> assert dp.RuntimeType.infer(["A", "B"]) == "Vec<String>"
>>> assert dp.RuntimeType.infer((12., True, "A")) == "(f64, bool,String)" # eq doesn't care about whitespace
>>> print(dp.RuntimeType.infer([]))
Traceback (most recent call last):
...
opendp.mod.UnknownTypeException: attempted to create a type_name with an unknown type: cannot infer atomic type when empty
"""
if type(public_example) in ELEMENTARY_TYPES:
return ELEMENTARY_TYPES[type(public_example)]
if isinstance(public_example, (Domain, Metric, Measure)):
return RuntimeType.parse(public_example.type) # pragma: no cover
pl = import_optional_dependency("polars", raise_error=False)
if pl is not None:
if isinstance(public_example, pl.LazyFrame):
return LazyFrame
if isinstance(public_example, pl.DataFrame):
return DataFrame
if isinstance(public_example, pl.Series):
return Series
if isinstance(public_example, pl.Expr):
return Expr
if isinstance(public_example, tuple):
return RuntimeType('Tuple', [cls.infer(e, py_object) for e in public_example])
def infer_homogeneous(value):
types = {cls.infer(v, py_object=py_object) for v in value}
if len(types) == 0:
return UnknownType("cannot infer atomic type when empty") # pragma: no cover
if len(types) == 1:
return next(iter(types))
if py_object: # pragma: no cover
return "ExtrinsicObject"
raise TypeError(f"elements must be homogeneously typed. Found {types}")
if isinstance(public_example, list):
return RuntimeType('Vec', [infer_homogeneous(public_example)])
if np is not None and isinstance(public_example, np.ndarray):
if public_example.ndim == 0: # pragma: no cover
return cls.infer(public_example.item(), py_object)
if public_example.ndim == 1: # pragma: no cover
inner_type = ELEMENTARY_TYPES.get(public_example.dtype.type)
if inner_type is None:
raise UnknownTypeException(f"Unknown numpy array dtype: {public_example.dtype.type}")
return RuntimeType('Vec', [inner_type])
raise UnknownTypeException("arrays with greater than one axis are not yet supported")
if isinstance(public_example, dict):
return RuntimeType('HashMap', [
infer_homogeneous(public_example.keys()),
infer_homogeneous(public_example.values())
])
if isinstance(public_example, Measurement): # pragma: no cover
return "AnyMeasurementPtr"
if isinstance(public_example, Transformation): # pragma: no cover
return "AnyTransformationPtr"
if public_example is None: # pragma: no cover
return RuntimeType('Option', [UnknownType("Constructed Option from a None variant")])
if callable(public_example): # pragma: no cover
return "CallbackFn"
if py_object: # pragma: no cover
return "ExtrinsicObject"
raise UnknownTypeException(type(public_example))
[docs]
@classmethod
def parse_or_infer(
cls,
type_name: RuntimeTypeDescriptor | None = None,
public_example: Any = None,
generics: Optional[list[str]] = None
) -> Union["RuntimeType", str]:
"""If type_name is supplied, normalize it. Otherwise, infer the normalized type from a public example.
:param type_name: type specifier. See RuntimeType.parse for documentation on valid inputs
:param public_example: data used to infer the type
:return: Normalized type. If the type has subtypes, returns a RuntimeType, else a str.
:rtype: Union["RuntimeType", str]
:param generics: For internal use. List of type names to consider generic when parsing.
:type: list[str]
:raises ValueError: if `type_name` fails to parse
:raises UnknownTypeException: if inference fails on `public_example` or no args are supplied
"""
if type_name is not None:
return cls.parse(type_name, generics)
if public_example is not None:
return cls.infer(public_example)
raise UnknownTypeException("either type_name or public_example must be passed")
[docs]
def substitute(self: Union["RuntimeType", str], **kwargs):
if isinstance(self, GenericType):
return kwargs.get(self.origin, self)
if isinstance(self, RuntimeType):
return RuntimeType(self.origin, self.args and [RuntimeType.substitute(arg, **kwargs) for arg in self.args])
return self
[docs]
class GenericType(RuntimeType):
def __repr__(self):
raise UnknownTypeException(f"attempted to create a type_name with an unknown generic: {self.origin}")
[docs]
class UnknownType(RuntimeType):
"""Indicator for a type that cannot be inferred. Typically the atomic type of an empty list.
RuntimeTypes containing UnknownType cannot be used in FFI
"""
origin: None # type: ignore[assignment]
args: None # type: ignore[assignment]
def __init__(self, reason): # pragma: no cover
self.origin = None
self.args = None
self.reason = reason
def __repr__(self):
raise UnknownTypeException(f"attempted to create a type_name with an unknown type: {self.reason}")
SymmetricDistance = 'SymmetricDistance'
InsertDeleteDistance = 'InsertDeleteDistance'
ChangeOneDistance = 'ChangeOneDistance'
HammingDistance = 'HammingDistance'
DiscreteDistance = 'DiscreteDistance'
[docs]
class SensitivityMetric(RuntimeType):
"""All sensitivity RuntimeTypes inherit from SensitivityMetric.
Provides static type checking in user-code for sensitivity metrics and a getitem interface like stdlib typing.
"""
def __getitem__(self, associated_type):
return SensitivityMetric(self.origin, [self.parse(type_name=associated_type)])
AbsoluteDistance: SensitivityMetric = SensitivityMetric('AbsoluteDistance')
L1Distance: SensitivityMetric = SensitivityMetric('L1Distance')
L2Distance: SensitivityMetric = SensitivityMetric('L2Distance')
[docs]
class PrivacyMeasure(RuntimeType):
"""All measure RuntimeTypes inherit from PrivacyMeasure.
Provides static type checking in user-code for privacy measures and a getitem interface like stdlib typing.
"""
def __getitem__(self, associated_type):
return PrivacyMeasure(self.origin, [self.parse(type_name=associated_type)])
MaxDivergence: PrivacyMeasure = PrivacyMeasure('MaxDivergence')
SmoothedMaxDivergence: PrivacyMeasure = PrivacyMeasure('SmoothedMaxDivergence')
FixedSmoothedMaxDivergence: PrivacyMeasure = PrivacyMeasure('FixedSmoothedMaxDivergence')
ZeroConcentratedDivergence: PrivacyMeasure = PrivacyMeasure('ZeroConcentratedDivergence')
[docs]
class Carrier(RuntimeType):
def __getitem__(self, subdomains):
if not isinstance(subdomains, tuple):
subdomains = (subdomains,)
return Carrier(self.origin, [self.parse(type_name=subdomain) for subdomain in subdomains])
Vec: Carrier = Carrier('Vec')
HashMap: Carrier = Carrier('HashMap')
i8: str = 'i8'
i16: str = 'i16'
i32: str = 'i32'
i64: str = 'i64'
i128: str = 'i128'
isize: str = 'isize'
u8: str = 'u8'
u16: str = 'u16'
u32: str = 'u32'
u64: str = 'u64'
u128: str = 'u128'
usize: str = 'usize'
f32: str = 'f32'
f64: str = 'f64'
String: str = 'String'
LazyFrame: str = 'LazyFrame'
DataFrame: str = 'DataFrame'
Series: str = 'Series'
Expr: str = 'Expr'
AnyMeasurementPtr: str = 'AnyMeasurementPtr'
AnyTransformationPtr: str = 'AnyTransformationPtr'
LazyFrameDomain: str = 'LazyFrame'
SeriesDomain: str = 'SeriesDomain'
[docs]
class DomainDescriptor(RuntimeType):
def __getitem__(self, subdomain):
if not isinstance(subdomain, tuple):
subdomain = (subdomain,)
return DomainDescriptor(self.origin, [self.parse(type_name=sub_i) for sub_i in subdomain])
def __call__(self, *args, **kwargs):
'''
>>> FakeDomain = DomainDescriptor('FakeDomain')
>>> FakeDomain(int)
Traceback (most recent call last):
...
Exception: Use dp.fake_domain to construst a new FakeDomain
'''
# https://stackoverflow.com/a/12867228/10727889
lc_name = re.sub('(?!^)([A-Z])', r'_\1', self.origin).lower()
raise Exception(f'Use dp.{lc_name} to construst a new {self.origin}')
AtomDomain: DomainDescriptor = DomainDescriptor('AtomDomain')
VectorDomain: DomainDescriptor = DomainDescriptor('VectorDomain')
OptionDomain: DomainDescriptor = DomainDescriptor('OptionDomain')
SizedDomain: DomainDescriptor = DomainDescriptor('SizedDomain')
MapDomain: DomainDescriptor = DomainDescriptor('MapDomain')
[docs]
def get_atom(type_name):
type_name = RuntimeType.parse(type_name)
while isinstance(type_name, RuntimeType):
if isinstance(type_name, (UnknownType, GenericType)):
return
type_name = type_name.args[0]
return type_name
[docs]
def get_atom_or_infer(type_name: Union[RuntimeType, str], example):
return get_atom(type_name) or RuntimeType.infer(example)
[docs]
def get_first(value):
if value is None or not len(value):
return None
return next(iter(value))
[docs]
def parse_or_infer(type_name: RuntimeTypeDescriptor | None, example) -> Union[RuntimeType, str]:
return RuntimeType.parse_or_infer(type_name, example)
[docs]
def pass_through(value: Any) -> Any:
return value
[docs]
def get_dependencies(value: Union[Measurement, Transformation, Function]) -> Any:
return getattr(value, "_dependencies", None)
[docs]
def get_dependencies_iterable(value: list[Union[Measurement, Transformation, Function]]) -> list[Any]:
return list(map(get_dependencies, value))
[docs]
def get_carrier_type(value: Domain) -> Union[RuntimeType, str]:
return value.carrier_type
[docs]
def get_type(value):
return value.type
[docs]
def get_value_type(type_name):
return RuntimeType.parse(type_name).args[1] # type: ignore[union-attr]
[docs]
def get_distance_type(value: Union[Metric, Measure]) -> Union[RuntimeType, str]:
return value.distance_type