opendp.context module#
The context
module provides opendp.context.Context
and supporting utilities.
For more context, see context in the User Guide.
For convenience, all the functions of this module are also available from opendp.prelude
.
We suggest importing under the conventional name dp
:
>>> import opendp.prelude as dp
- class opendp.context.Context(accountant, queryable, d_in, d_mids=None, d_out=None, space_override=None)[source]#
A Context coordinates queries to an instance of a privacy
accountant
.It is recommended to use the
make_sequential_composition
constructor instead of this one.- Parameters:
accountant (Measurement) – The measurement used to spawn the queryable.
queryable (Queryable) – Executes the queries and tracks the privacy expenditure.
d_in (float) – An upper bound on the distance between adjacent datasets.
d_mids (list[float] | None) – A sequence of privacy losses for each query to be sent to the queryable. Used for compositors.
d_out (float | None) – An upper bound on the overall privacy loss. Used for filters.
- accountant: Measurement#
The accountant is the measurement used to spawn the queryable. It contains information about the queryable, such as the input domain, input metric, and output measure expected of measurement queries sent to the queryable.
- static compositor(data, privacy_unit, privacy_loss, split_evenly_over=None, split_by_weights=None, domain=None, margins=None)[source]#
Constructs a new context containing a sequential compositor with the given weights.
If the domain is not specified, it will be inferred from the data. This makes the assumption that the structure of the data is public information.
split_evenly_over
andsplit_by_weights
are mutually exclusive.- Parameters:
data (Any) – The data to be analyzed.
privacy_unit (tuple[Metric, float]) – The privacy unit of the compositor.
privacy_loss (tuple[Measure, Any]) – The privacy loss of the compositor.
split_evenly_over (int | None) – The number of parts to evenly distribute the privacy loss.
split_by_weights (list[float] | None) – A list of weights for each intermediate privacy loss.
domain (Domain | None) – The domain of the data.
margins (dict[tuple[str, ...], Margin] | None) – A dictionary where the keys are grouping columns and values describe known properties of the respective margins.
- Return type:
- query(**kwargs)[source]#
Starts a new Query to be executed in this context.
If the context has been constructed with a sequence of privacy losses, the next loss will be used. Otherwise, the loss will be computed from the kwargs.
- Parameters:
kwargs – The privacy loss to use for the query. Passed directly into
loss_of()
.- Return type:
- class opendp.context.PartialChain(f, *args, **kwargs)[source]#
A partial chain is a transformation or measurement that is missing one numeric parameter.
The parameter can be solved for by calling the fix method, which returns the closest transformation or measurement that satisfies the given stability or privacy constraint.
- fix(d_in, d_out, output_measure=None, T=None)[source]#
Returns the closest transformation or measurement that satisfies the given stability or privacy constraint.
The discovered parameter is assigned to the param attribute of the returned transformation or measurement.
- Parameters:
d_in (float) –
d_out (float) –
output_measure (Measure | None) –
- partial: Callable[[float], Transformation | Measurement]#
The partial transformation or measurement.
- class opendp.context.Query(chain, output_measure=None, d_in=None, d_out=None, context=None, _wrap_release=None)[source]#
A helper API to build a measurement.
- Parameters:
chain (tuple[Domain, Metric] | Transformation | Measurement | PartialChain) –
output_measure (Measure) –
d_in (float | None) –
d_out (float | None) –
context (Context) –
_wrap_release (Callable[[Any], Any] | None) –
- compositor(split_evenly_over=None, split_by_weights=None, d_out=None, output_measure=None)[source]#
Constructs a new context containing a sequential compositor with the given weights.
split_evenly_over
andsplit_by_weights
are mutually exclusive.
- new_with(*, chain, wrap_release=None)[source]#
Convenience constructor that creates a new query with a different chain.
- Parameters:
chain (tuple[Domain, Metric] | Transformation | Measurement | PartialChain) –
- Return type:
- opendp.context.domain_of(T, infer=False)[source]#
Constructs an instance of a domain from carrier type
T
, or from an example.Accepts a limited set of Python type expressions:
>>> import opendp.prelude as dp >>> dp.domain_of(list[int]) VectorDomain(AtomDomain(T=i32))
As well as strings representing types in the underlying Rust syntax:
>>> dp.domain_of('Vec<int>') VectorDomain(AtomDomain(T=i32))
Dictionaries, optional types, and a range of primitive types are supported:
>>> dp.domain_of(dict[str, int]) MapDomain { key_domain: AtomDomain(T=String), value_domain: AtomDomain(T=i32) }
>>> dp.domain_of('Option<int>') # Python's `Optional` is not supported. OptionDomain(AtomDomain(T=i32))
>>> dp.domain_of(dp.i32) AtomDomain(T=i32)
More complex types are not supported:
>>> dp.domain_of(list[list[int]]) Traceback (most recent call last): ... opendp.mod.OpenDPException: FFI("VectorDomain constructor only supports AtomDomain or UserDomain inner domains")
Alternatively, an example of the data can be provided, but note that passing sensitive data may result in a privacy violation:
>>> dp.domain_of([1, 2, 3], infer=True) VectorDomain(AtomDomain(T=i32))
- Parameters:
T – carrier type
infer (bool) – if True,
T
is an example of the sensitive dataset. Passing sensitive data may result in a privacy violation.
- Return type:
- opendp.context.loss_of(epsilon=None, delta=None, rho=None, U=None)[source]#
Constructs a privacy loss, consisting of a privacy measure and a privacy loss parameter.
>>> import opendp.prelude as dp >>> dp.loss_of(epsilon=1.0) (MaxDivergence(f64), 1.0) >>> dp.loss_of(epsilon=1.0, delta=1e-9) (FixedSmoothedMaxDivergence(f64), (1.0, 1e-09)) >>> dp.loss_of(rho=1.0) (ZeroConcentratedDivergence(f64), 1.0)
- Parameters:
epsilon (float | None) – Parameter for pure ε-DP.
delta (float | None) – Parameter for approximate (ε,δ)-DP.
rho (float | None) – Parameter for zero-concentrated ρ-DP.
U – The type of the privacy parameter; Inferred if not provided.
- Return type:
tuple[Measure, float | tuple[float, float]]
- opendp.context.metric_of(M)[source]#
Constructs an instance of a metric from metric type
M
.- Return type:
- opendp.context.space_of(T, M=None, infer=False)[source]#
A shorthand for building a metric space.
A metric space consists of a domain and a metric.
>>> import opendp.prelude as dp ... >>> dp.space_of(list[int]) (VectorDomain(AtomDomain(T=i32)), SymmetricDistance()) >>> # the verbose form allows greater control: >>> (dp.vector_domain(dp.atom_domain(T=dp.i32)), dp.symmetric_distance()) (VectorDomain(AtomDomain(T=i32)), SymmetricDistance())
- opendp.context.unit_of(*, contributions=None, changes=None, absolute=None, l1=None, l2=None, ordered=False, U=None)[source]#
Constructs a unit of privacy, consisting of a metric and a dataset distance. The parameters are mutually exclusive.
>>> import opendp.prelude as dp >>> dp.unit_of(contributions=3) (SymmetricDistance(), 3) >>> dp.unit_of(l1=2.0) (L1Distance(f64), 2.0)
- Parameters:
contributions (int | None) – Greatest number of records a privacy unit may contribute to microdata
changes (int | None) – Greatest number of records a privacy unit may change in microdata
absolute (float | None) – Greatest absolute distance a privacy unit can influence a scalar aggregate data set
l1 (float | None) – Greatest l1 distance a privacy unit can influence a vector aggregate data set
l2 (float | None) – Greatest l2 distance a privacy unit can influence a vector aggregate data set
ordered (bool) – Set to
True
to useInsertDeleteDistance
instead ofSymmetricDistance
, orHammingDistance
instead ofChangeOneDistance
.U – The type of the dataset distance.
- Return type:
tuple[Metric, float]