This documentation is for an old version of OpenDP.

The current release of OpenDP is v0.11.1.

Source code for opendp.extras.numpy

'''
This module requires extra installs: ``pip install opendp[numpy]``

For convenience, all the functions of this module are also available from :py:mod:`opendp.prelude`.
We suggest importing under the conventional name ``dp``:

.. code:: python

    >>> import opendp.prelude as dp

The methods of this module will then be accessible at ``dp.numpy``.    
'''

from __future__ import annotations
from typing import NamedTuple, Literal
from opendp.mod import Domain, Metric, Transformation
from opendp.typing import RuntimeTypeDescriptor, ELEMENTARY_TYPES
from opendp._convert import ATOM_MAP
from opendp._lib import import_optional_dependency
from opendp.extras._utilities import register_transformation
import typing

if typing.TYPE_CHECKING: # pragma: no cover
    import numpy # type: ignore[import-not-found]

def _check_norm_and_p(norm: float | None, p: int | None):
    """Checks that a scalar L`p` `norm` is well-defined"""
    if (norm is None) != (p is None):
        raise ValueError("norm and p must both be set")

    if norm is not None:
        if isinstance(norm, int):
            norm = float(norm)
        if not isinstance(norm, float):
            raise ValueError("norm must be float")
        if norm < 0.0:
            raise ValueError("norm must be non-negative")

    if p not in {None, 1, 2}:
        raise ValueError("p must be 1 or 2")


def _check_nonnegative_int(v: int | None, name: str):
    if v is not None:
        if not isinstance(v, int):
            raise ValueError(f"{name} must be an integer")
        if v < 0:
            raise ValueError(f"{name} must be non-negative")


def _fmt_attrs(attrs: NamedTuple) -> str:
    return ", ".join(f"{k}={v}" for k, v in attrs._asdict().items() if v is not None)


[docs] def array2_domain( *, norm: float | None = None, p: Literal[1, 2, None] = None, origin=None, size: int | None = None, num_columns: int | None = None, T: RuntimeTypeDescriptor | None = None, ) -> Domain: """Construct a Domain representing 2-dimensional numpy arrays. :param norm: each row in x is bounded by the norm :param p: designates L`p` norm :param origin: center of the norm region. Assumed to be at zero :param size: number of rows in data :param num_columns: number of columns in the data :param T: atom type """ np = import_optional_dependency('numpy') import opendp.prelude as dp _check_norm_and_p(norm, p) if norm is not None: # normalize origin to a scalar origin = origin if origin is not None else 0.0 if norm is None and origin is not None: raise ValueError("origin may only be set if data has bounded norm") if isinstance(origin, (int, float)): # normalize origin to a 1d-ndarray origin = np.array(origin) if isinstance(origin, np.ndarray): if origin.dtype.kind in {"i", "u"}: origin = origin.astype(float) if origin.dtype.kind != "f": raise ValueError("origin array must be numeric") if origin.ndim == 0: if origin != 0: raise ValueError("scalar origin must be zero") if num_columns is not None: # normalize to a 1d-ndarray origin = np.repeat(origin, num_columns) if origin.ndim == 1: if num_columns is None: num_columns = origin.size if num_columns != origin.size: raise ValueError(f"origin must have num_columns={num_columns} values") if origin.ndim not in {0, 1}: raise ValueError("origin must have 0 or 1 dimensions") elif origin is not None: raise ValueError("origin must be a scalar or ndarray") _check_nonnegative_int(size, "size") _check_nonnegative_int(num_columns, "num_columns") T = T or ELEMENTARY_TYPES.get(origin.dtype.type) if T is None: raise ValueError("must specify T, the type of data in the array") T = dp.RuntimeType.parse(T) if T not in ATOM_MAP: raise ValueError("T must be in an elementary type") def member(x): if not isinstance(x, np.ndarray): raise TypeError("must be a numpy ndarray") T_actual = ELEMENTARY_TYPES.get(x.dtype.type) if T_actual != T: raise TypeError(f"expected data of type {T}, got {T_actual}") if x.ndim != 2: raise ValueError("Expected 2-dimensional array") if num_columns is not None and x.shape[1] != num_columns: raise ValueError(f"must have {num_columns} columns") if origin is not None: x = x - origin if norm is not None: max_norm = np.linalg.norm(x, ord=p, axis=1).max() if max_norm > norm: raise ValueError(f"row norm is too large. {max_norm} > {norm}") if size is not None and len(x) != size: raise ValueError(f"expected exactly {size} rows") return True class NPArray2Descriptor(NamedTuple): origin: numpy.ndarray | None norm: float | None p: Literal[1, 2, None] size: int | None num_columns: int | None T: str | dp.RuntimeType desc = NPArray2Descriptor( origin=origin, norm=norm, p=p, size=size, num_columns=num_columns, T=T, ) return dp.user_domain(f"NPArray2Domain({_fmt_attrs(desc)})", member, desc)
def _sscp_domain( *, norm: float | None = None, p: Literal[1, 2, None] = None, size: int | None = None, num_features: int | None = None, T: RuntimeTypeDescriptor = float, ) -> Domain: """The domain of sums of squares and cross products matrices formed by computing x^Tx, for some dataset x. :param norm: each row in x is bounded by the norm :param p: designates L`p` norm :param size: number of rows in data :param num_features: number of rows/columns in the matrix """ import opendp.prelude as dp np = import_optional_dependency('numpy') _check_norm_and_p(norm, p) _check_nonnegative_int(size, "size") _check_nonnegative_int(num_features, "num_features") if T is None: raise ValueError("must specify T, the type of data in the array") T = dp.RuntimeType.parse(T) if T not in {dp.f32, dp.f64}: raise ValueError("T must be a float type") def member(x): if not isinstance(x, np.ndarray): raise TypeError("must be a numpy ndarray") T_actual = ELEMENTARY_TYPES.get(x.dtype.type) if T_actual != T: raise TypeError(f"expected data of type {T}, got {T_actual}") if x.shape != (num_features,) * 2: raise ValueError(f"expected a square array with {num_features} features") return True class NPSSCPDescriptor(NamedTuple): num_features: int | None norm: float | None p: Literal[1, 2, None] size: int | None T: str | dp.RuntimeType desc = NPSSCPDescriptor( num_features=num_features, norm=norm, p=p, size=size, T=T, ) return dp.user_domain(f"NPSSCPDomain({_fmt_attrs(desc)})", member, desc)
[docs] def make_np_clamp( input_domain: Domain, input_metric: Metric, norm, p, origin=None ) -> Transformation: """Construct a Transformation that clamps the norm of input data. :param input_domain: instance of `array2_domain(...)` :param input_metric: instance of `symmetric_distance()` :param norm: clamp each row to this norm. Required if data is not already bounded :param p: designates L`p` norm :param origin: norm clamping is centered on this point. Defaults to zero """ import opendp.prelude as dp np = import_optional_dependency('numpy') dp.assert_features("contrib") norm = float(norm) if norm < 0.0: raise ValueError("norm must not be negative") if p not in {1, 2}: raise ValueError("order p must be 1 or 2") if origin is None: origin = 0.0 def function(arg): arg = arg.copy() arg -= origin # may have to run multiple times due to FP rounding current_norm = np.linalg.norm(arg, ord=p, axis=1, keepdims=True) while current_norm.max() > norm: arg /= np.maximum(current_norm / norm, 1) current_norm = np.linalg.norm(arg, ord=p, axis=1, keepdims=True) arg += origin return arg kwargs = input_domain.descriptor._asdict() | { "norm": norm, "p": p, "origin": origin, } return dp.t.make_user_transformation( input_domain, input_metric, dp.numpy.array2_domain(**kwargs), input_metric, function, lambda d_in: d_in, )
# generate then variant of the constructor # TODO: Show this in the API Reference? then_np_clamp = register_transformation(make_np_clamp)