This documentation is for an old version of OpenDP.

The current release of OpenDP is v0.11.1.

Source code for opendp.mod

'''
The ``mod`` module provides the classes which implement the
`OpenDP Programming Framework <../../api/user-guide/programming-framework/index.html>`_,
as well as utilities for enabling features and finding parameter values.

The classes here correspond to other top-level modules: For example,
instances of :py:class:`opendp.mod.Domain` are either inputs or outputs for functions in :py:mod:`opendp.domains`.
'''
from __future__ import annotations
import ctypes
from typing import Any, Literal, Type, TypeVar, Union, Callable, Optional, overload, TYPE_CHECKING, cast

from opendp._lib import AnyMeasurement, AnyTransformation, AnyDomain, AnyMetric, AnyMeasure, AnyFunction

# https://mypy.readthedocs.io/en/stable/runtime_troubles.html#import-cycles
if TYPE_CHECKING:
    from opendp.typing import RuntimeType # pragma: no cover


[docs] class Measurement(ctypes.POINTER(AnyMeasurement)): # type: ignore[misc] """A differentially private unit of computation. A measurement contains a function and a privacy relation. The function releases a differentially-private release. The privacy relation maps from an input metric to an output measure. See the `Measurement <../../api/user-guide/programming-framework/core-structures.html#measurement>`_ section in the Programming Framework docs for more context. Functions for creating measurements are in :py:mod:`opendp.measurements`. :example: >>> import opendp.prelude as dp >>> dp.enable_features("contrib") >>> # create an instance of Measurement using a constructor from the meas module >>> laplace = dp.m.make_laplace( ... dp.atom_domain(T=int), dp.absolute_distance(T=int), ... scale=2.) >>> laplace Measurement( input_domain = AtomDomain(T=i32), input_metric = AbsoluteDistance(i32), output_measure = MaxDivergence(f64)) >>> # invoke the measurement (invoke and __call__ are equivalent) >>> print('explicit: ', laplace.invoke(100)) # -> 101 # doctest: +ELLIPSIS explicit: ... >>> print('concise: ', laplace(100)) # -> 99 # doctest: +ELLIPSIS concise: ... >>> # check the measurement's relation at >>> # (1, 0.5): (AbsoluteDistance<u32>, MaxDivergence) >>> assert laplace.check(1, 0.5) >>> # chain with a transformation from the trans module >>> chained = ( ... (dp.vector_domain(dp.atom_domain(T=int)), dp.symmetric_distance()) >> ... dp.t.then_count() >> ... laplace ... ) >>> # the resulting measurement has the same features >>> print('dp count: ', chained([1, 2, 3])) # -> 4 # doctest: +ELLIPSIS dp count: ... >>> # check the chained measurement's relation at >>> # (1, 0.5): (SymmetricDistance, MaxDivergence) >>> assert chained.check(1, 0.5) """ _type_ = AnyMeasurement def __call__(self, arg): from opendp.core import measurement_invoke return measurement_invoke(self, arg)
[docs] def invoke(self, arg): """Create a differentially-private release with `arg`. If `self` is (d_in, d_out)-close, then each invocation of this function is a d_out-DP release. :param arg: Input to the measurement. :return: differentially-private release :raises OpenDPException: packaged error from the core OpenDP library """ from opendp.core import measurement_invoke return measurement_invoke(self, arg)
[docs] def map(self, d_in): """Map an input distance `d_in` to an output distance.""" from opendp.core import measurement_map return measurement_map(self, d_in)
[docs] def check(self, d_in, d_out, *, debug=False) -> bool: """Check if the measurement is (`d_in`, `d_out`)-close. If true, implies that if the distance between inputs is at most `d_in`, then the privacy usage is at most `d_out`. See also :func:`~Transformation.check`, a similar check for transformations. :param d_in: Distance in terms of the input metric. :param d_out: Distance in terms of the output measure. :param debug: Enable to raise Exceptions to help identify why the privacy relation failed. :return: If True, a release is differentially private at `d_in`, `d_out`. :rtype: bool """ from opendp.core import measurement_check if debug: return measurement_check(self, d_in, d_out) try: return measurement_check(self, d_in, d_out) except OpenDPException as err: if err.variant == "RelationDebug": return False raise
def __rshift__(self, other: Union["Function", "Transformation", Callable]) -> "Measurement": if isinstance(other, Transformation): other = other.function if not isinstance(other, Function): if not callable(other): raise ValueError(f'Expected a callable instead of {other}') from opendp.core import new_function other = new_function(other, TO="ExtrinsicObject") from opendp.combinators import make_chain_pm return make_chain_pm(other, self) @property def input_domain(self) -> "Domain": from opendp.core import measurement_input_domain return measurement_input_domain(self) @property def input_metric(self) -> "Metric": from opendp.core import measurement_input_metric return measurement_input_metric(self) @property def input_space(self) -> tuple["Domain", "Metric"]: return self.input_domain, self.input_metric @property def output_measure(self) -> "Measure": from opendp.core import measurement_output_measure return measurement_output_measure(self) @property def function(self) -> "Function": from opendp.core import measurement_function return measurement_function(self) @property def input_distance_type(self) -> Union["RuntimeType", str]: """Retrieve the distance type of the input metric. This may be any integral type for dataset metrics, or any numeric type for sensitivity metrics. :return: distance type """ from opendp.core import measurement_input_distance_type from opendp.typing import RuntimeType return RuntimeType.parse(measurement_input_distance_type(self)) @property def output_distance_type(self) -> Union["RuntimeType", str]: """Retrieve the distance type of the output measure. This is the type that the budget is expressed in. :return: distance type """ from opendp.core import measurement_output_distance_type from opendp.typing import RuntimeType return RuntimeType.parse(measurement_output_distance_type(self)) @property def input_carrier_type(self) -> Union["RuntimeType", str]: """Retrieve the carrier type of the input domain. Any member of the input domain is a member of the carrier type. :return: carrier type """ from opendp.core import measurement_input_carrier_type from opendp.typing import RuntimeType return RuntimeType.parse(measurement_input_carrier_type(self)) def _depends_on(self, *args): """Extends the memory lifetime of args to the lifetime of self.""" setattr(self, "_dependencies", args) def __del__(self): try: from opendp.core import _measurement_free _measurement_free(self) except (ImportError, TypeError): # an example error that this catches: # ImportError: sys.meta_path is None, Python is likely shutting down pass def __repr__(self) -> str: return f"""Measurement( input_domain = {self.input_domain}, input_metric = {self.input_metric}, output_measure = {self.output_measure})""" def __iter__(self): # this overrides the implementation of __iter__ on POINTER, # which yields infinitely on zero-sized types raise ValueError("Measurement does not support iteration")
[docs] class Transformation(ctypes.POINTER(AnyTransformation)): # type: ignore[misc] """A non-differentially private unit of computation. A transformation contains a function and a stability relation. The function maps from an input domain to an output domain. The stability relation maps from an input metric to an output metric. See the `Transformation <../../api/user-guide/programming-framework/core-structures.html#transformation>`_ section in the Programming Framework docs for more context. Functions for creating transformations are in :py:mod:`opendp.transformations`. :example: >>> import opendp.prelude as dp >>> dp.enable_features("contrib") >>> # create an instance of Transformation using a constructor from the trans module >>> input_space = (dp.vector_domain(dp.atom_domain(T=int)), dp.symmetric_distance()) >>> count = input_space >> dp.t.then_count() >>> count Transformation( input_domain = VectorDomain(AtomDomain(T=i32)), output_domain = AtomDomain(T=i32), input_metric = SymmetricDistance(), output_metric = AbsoluteDistance(i32)) >>> count.input_space (VectorDomain(AtomDomain(T=i32)), SymmetricDistance()) >>> # invoke the transformation (invoke and __call__ are equivalent) >>> count.invoke([1, 2, 3]) 3 >>> count([1, 2, 3]) 3 >>> # check the transformation's relation at >>> # (1, 1): (SymmetricDistance, AbsoluteDistance<u32>) >>> assert count.check(1, 1) >>> # chain with more transformations from the trans module >>> chained = ( ... dp.t.make_split_lines() >> ... dp.t.then_cast_default(TOA=int) >> ... count ... ) >>> # the resulting transformation has the same features >>> chained("1\\n2\\n3") 3 >>> assert chained.check(1, 1) # both chained transformations were 1-stable """ _type_ = AnyTransformation
[docs] def invoke(self, arg): """Execute a non-differentially-private query with `arg`. :param arg: Input to the transformation. :return: non-differentially-private answer :raises OpenDPException: packaged error from the core OpenDP library """ from opendp.core import transformation_invoke return transformation_invoke(self, arg)
def __call__(self, arg): from opendp.core import transformation_invoke return transformation_invoke(self, arg)
[docs] def map(self, d_in): """Map an input distance `d_in` to an output distance.""" from opendp.core import transformation_map return transformation_map(self, d_in)
[docs] def check(self, d_in, d_out, *, debug=False): """Check if the transformation is (`d_in`, `d_out`)-close. If true, implies that if the distance between inputs is at most `d_in`, then the distance between outputs is at most `d_out`. See also :func:`~Measurement.check`, a similar check for measurements. :param d_in: Distance in terms of the input metric. :param d_out: Distance in terms of the output metric. :param debug: Enable to raise Exceptions to help identify why the stability relation failed. :return: True if the relation passes. False if the relation failed. :rtype: bool :raises OpenDPException: packaged error from the core OpenDP library """ from opendp.core import transformation_check if debug: return transformation_check(self, d_in, d_out) try: return transformation_check(self, d_in, d_out) except OpenDPException as err: if err.variant == "RelationDebug": return False raise
@overload def __rshift__(self, other: "Transformation") -> "Transformation": ... @overload def __rshift__(self, other: "Measurement") -> "Measurement": ... @overload def __rshift__(self, other: "PartialConstructor") -> "PartialConstructor": ... def __rshift__(self, other: Union["Measurement", "Transformation", "PartialConstructor"]) -> Union["Measurement", "Transformation", "PartialConstructor", "PartialChain"]: # type: ignore[name-defined] # noqa F821 if isinstance(other, Measurement): from opendp.combinators import make_chain_mt return make_chain_mt(other, self) if isinstance(other, Transformation): from opendp.combinators import make_chain_tt return make_chain_tt(other, self) if isinstance(other, PartialConstructor): return self >> other(self.output_domain, self.output_metric) # type: ignore[call-arg] from opendp.context import PartialChain if isinstance(other, PartialChain): return PartialChain(lambda x: self >> other.partial(x)) raise ValueError(f"rshift expected a measurement or transformation, got {other}") @property def input_domain(self) -> "Domain": from opendp.core import transformation_input_domain return transformation_input_domain(self) @property def output_domain(self) -> "Domain": from opendp.core import transformation_output_domain return transformation_output_domain(self) @property def input_metric(self) -> "Metric": from opendp.core import transformation_input_metric return transformation_input_metric(self) @property def output_metric(self) -> "Metric": from opendp.core import transformation_output_metric return transformation_output_metric(self) @property def input_space(self) -> tuple["Domain", "Metric"]: return self.input_domain, self.input_metric @property def output_space(self) -> tuple["Domain", "Metric"]: return self.output_domain, self.output_metric @property def function(self) -> "Function": from opendp.core import transformation_function return transformation_function(self) @property def input_distance_type(self) -> Union["RuntimeType", str]: """Retrieve the distance type of the input metric. This may be any integral type for dataset metrics, or any numeric type for sensitivity metrics. :return: distance type """ from opendp.core import transformation_input_distance_type from opendp.typing import RuntimeType return RuntimeType.parse(transformation_input_distance_type(self)) @property def output_distance_type(self) -> Union["RuntimeType", str]: """Retrieve the distance type of the output metric. This may be any integral type for dataset metrics, or any numeric type for sensitivity metrics. :return: distance type """ from opendp.core import transformation_output_distance_type from opendp.typing import RuntimeType return RuntimeType.parse(transformation_output_distance_type(self)) @property def input_carrier_type(self) -> Union["RuntimeType", str]: """Retrieve the carrier type of the input domain. Any member of the input domain is a member of the carrier type. :return: carrier type """ from opendp.core import transformation_input_carrier_type from opendp.typing import RuntimeType return RuntimeType.parse(transformation_input_carrier_type(self)) def _depends_on(self, *args): """Extends the memory lifetime of args to the lifetime of self.""" setattr(self, "_dependencies", args) def __del__(self): try: from opendp.core import _transformation_free _transformation_free(self) except (ImportError, TypeError): # an example error that this catches: # ImportError: sys.meta_path is None, Python is likely shutting down pass def __repr__(self) -> str: return f"""Transformation( input_domain = {self.input_domain}, output_domain = {self.output_domain}, input_metric = {self.input_metric}, output_metric = {self.output_metric})""" def __iter__(self): raise ValueError("Transformation does not support iteration")
Transformation = cast(Type[Transformation], Transformation) # type: ignore[misc]
[docs] class Queryable(object): def __init__(self, value, query_type): self.value = value self.query_type = query_type def __call__(self, query): from opendp.core import queryable_eval return queryable_eval(self.value, query)
[docs] def eval(self, query): from opendp.core import queryable_eval # pragma: no cover return queryable_eval(self.value, query) # pragma: no cover
def __repr__(self) -> str: return f"Queryable(Q={self.query_type})" def _depends_on(self, *args): """Extends the memory lifetime of args to the lifetime of self.""" setattr(self, "_dependencies", args)
[docs] class Function(ctypes.POINTER(AnyFunction)): # type: ignore[misc] ''' See the `Function <../../api/user-guide/programming-framework/supporting-elements.html#function>`_ section in the Programming Framework docs for more context. ''' _type_ = AnyFunction def __call__(self, arg): from opendp.core import function_eval return function_eval(self, arg) def _depends_on(self, *args): """Extends the memory lifetime of args to the lifetime of self.""" setattr(self, "_dependencies", args) def __del__(self): try: from opendp.core import _function_free _function_free(self) except (ImportError, TypeError): # an example error that this catches: # ImportError: sys.meta_path is None, Python is likely shutting down pass def __iter__(self): raise ValueError("Function does not support iteration")
[docs] class Domain(ctypes.POINTER(AnyDomain)): # type: ignore[misc] ''' See the `Domain <../../api/user-guide/programming-framework/supporting-elements.html#domain>`_ section in the Programming Framework docs for more context. Functions for creating domains are in :py:mod:`opendp.domains`. ''' _type_ = AnyDomain
[docs] def member(self, val): from opendp.domains import member return member(self, val)
@property def type(self) -> Union["RuntimeType", str]: from opendp.domains import domain_type from opendp.typing import RuntimeType return RuntimeType.parse(domain_type(self)) @property def carrier_type(self) -> Union["RuntimeType", str]: from opendp.domains import domain_carrier_type from opendp.typing import RuntimeType return RuntimeType.parse(domain_carrier_type(self)) @property def descriptor(self) -> Any: from opendp.domains import _user_domain_descriptor return _user_domain_descriptor(self) def __repr__(self) -> str: from opendp.domains import domain_debug return domain_debug(self) def __del__(self): try: from opendp.domains import _domain_free _domain_free(self) except (ImportError, TypeError): # an example error that this catches: # ImportError: sys.meta_path is None, Python is likely shutting down pass def __eq__(self, other) -> bool: # TODO: consider adding ffi equality return str(self) == str(other) def __hash__(self) -> int: return hash(str(self)) def _depends_on(self, *args): """Extends the memory lifetime of args to the lifetime of self.""" setattr(self, "_dependencies", args) def __iter__(self): raise ValueError("Domain does not support iteration")
[docs] class Metric(ctypes.POINTER(AnyMetric)): # type: ignore[misc] ''' See the `Metric <../../api/user-guide/programming-framework/supporting-elements.html#metric>`_ section in the Programming Framework docs for more context. Functions for creating metrics are in :py:mod:`opendp.metrics`. ''' _type_ = AnyMetric @property def type(self): from opendp.metrics import metric_type from opendp.typing import RuntimeType return RuntimeType.parse(metric_type(self)) @property def distance_type(self) -> Union["RuntimeType", str]: from opendp.metrics import metric_distance_type from opendp.typing import RuntimeType return RuntimeType.parse(metric_distance_type(self)) def __repr__(self) -> str: from opendp.metrics import metric_debug return metric_debug(self) def __del__(self): try: from opendp.metrics import _metric_free _metric_free(self) except (ImportError, TypeError): # an example error that this catches: # ImportError: sys.meta_path is None, Python is likely shutting down pass def __eq__(self, other) -> bool: # TODO: consider adding ffi equality return str(self) == str(other) def __hash__(self) -> int: return hash(str(self)) def __iter__(self): raise ValueError("Metric does not support iteration")
[docs] class Measure(ctypes.POINTER(AnyMeasure)): # type: ignore[misc] ''' See the `Measure <../../api/user-guide/programming-framework/supporting-elements.html#measure>`_ section in the Programming Framework docs for more context. Measures should be created with the functions in :py:mod:`opendp.measures` or :py:mod:`opendp.context`, for a higher-level interface: >>> import opendp.prelude as dp >>> measure, distance = dp.loss_of(epsilon=1.0) >>> measure, distance (MaxDivergence(f64), 1.0) ''' _type_ = AnyMeasure @property def type(self): from opendp.measures import measure_type from opendp.typing import RuntimeType return RuntimeType.parse(measure_type(self)) @property def distance_type(self) -> Union["RuntimeType", str]: from opendp.measures import measure_distance_type from opendp.typing import RuntimeType return RuntimeType.parse(measure_distance_type(self)) def __repr__(self): from opendp.measures import measure_debug return measure_debug(self) def __del__(self): try: from opendp.measures import _measure_free _measure_free(self) except (ImportError, TypeError): # an example error that this catches: # ImportError: sys.meta_path is None, Python is likely shutting down pass def __eq__(self, other): return str(self) == str(other) def __hash__(self) -> int: return hash(str(self)) def __iter__(self): raise ValueError("Measure does not support iteration")
[docs] class SMDCurve(object): def __init__(self, curve): self.curve = curve
[docs] def epsilon(self, delta): from opendp._data import smd_curve_epsilon return smd_curve_epsilon(self.curve, delta)
[docs] class PartialConstructor(object): def __init__(self, constructor): self.constructor = constructor def __call__(self, input_domain: Domain, input_metric: Metric): return self.constructor(input_domain, input_metric) def __rshift__(self, other): return PartialConstructor(lambda input_domain, input_metric: self(input_domain, input_metric) >> other) # pragma: no cover def __rrshift__(self, other): if isinstance(other, tuple) and list(map(type, other)) == [Domain, Metric]: return self(other[0], other[1]) raise TypeError(f"Cannot chain {type(self)} with {type(other)}")
[docs] class UnknownTypeException(Exception): pass
[docs] class OpenDPException(Exception): """General exception for errors originating from the underlying OpenDP library. The variant attribute corresponds to `one of the following variants <https://github.com/opendp/opendp/blob/53ec58d01762ca5ceee08590d7e7b725bbdafcf6/rust/opendp/src/error.rs#L46-L87>`_ and can be matched on. Error variants may change in library updates. See `Rust ErrorVariant <https://docs.rs/opendp/latest/opendp/error/enum.ErrorVariant.html>`_ for values variant may take on. Run ``dp.enable_features('rust-stack-trace')`` to see wrapped Rust stack traces. """ raw_traceback: Optional[str] def __init__(self, variant: str, message: Optional[str] = None, raw_traceback: Optional[str] = None): self.variant = variant self.message = message self.raw_traceback = raw_traceback def _raw_frames(self): import re return re.split(r"\s*[0-9]+: ", self.raw_traceback or "") def _frames(self): def format_frame(frame): return "\n ".join(line.strip() for line in frame.split("\n")) return [format_frame(f) for f in self._raw_frames() if f.startswith("opendp") or f.startswith("<opendp")] def _continued_stack_trace(self): # join and split by newlines because frames may be multi-line lines = "\n".join(self._frames()[::-1]).split('\n') return "Continued Rust stack trace:\n" + '\n'.join(' ' + line for line in lines) def __str__(self) -> str: ''' >>> raw_traceback = """ ... 0: top ... 1: opendp single line ... 2: opendp multi ... line ... 3: bottom ... """ >>> e = OpenDPException(variant='SomeVariant', message='my message', raw_traceback=raw_traceback) >>> dp.enable_features('rust-stack-trace') >>> print(e) Continued Rust stack trace: opendp multi line opendp single line SomeVariant("my message") >>> dp.disable_features('rust-stack-trace') >>> print(e) <BLANKLINE> SomeVariant("my message") ''' response = '' if self.raw_traceback and 'rust-stack-trace' in GLOBAL_FEATURES: response += self._continued_stack_trace() response += '\n ' + self.variant if self.message: response += f'("{self.message}")' return response
GLOBAL_FEATURES = set()
[docs] def enable_features(*features: str) -> None: GLOBAL_FEATURES.update(set(features))
[docs] def disable_features(*features: str) -> None: GLOBAL_FEATURES.difference_update(set(features))
[docs] def assert_features(*features: str) -> None: for feature in features: assert feature in GLOBAL_FEATURES, f"Attempted to use function that requires {feature}, but {feature} is not enabled. See https://github.com/opendp/opendp/discussions/304, then call enable_features(\"{feature}\")"
M = TypeVar("M", Transformation, Measurement)
[docs] def binary_search_chain( make_chain: Callable[[float], M], d_in: Any, d_out: Any, bounds: tuple[float, float] | None = None, T=None) -> M: """Find the highest-utility (`d_in`, `d_out`)-close Transformation or Measurement. Searches for the numeric parameter to `make_chain` that results in a computation that most tightly satisfies `d_out` when datasets differ by at most `d_in`, then returns the Transformation or Measurement corresponding to said parameter. See `binary_search_param` to retrieve the discovered parameter instead of the complete computation chain. :param make_chain: a function that takes a number and returns a Transformation or Measurement :param d_in: how far apart input datasets can be :param d_out: how far apart output datasets or distributions can be :param bounds: a 2-tuple of the lower and upper bounds on the input of `make_chain` :param T: type of argument to `make_chain`, one of {float, int} :return: a chain parameterized at the nearest passing value to the decision point of the relation :rtype: Union[Transformation, Measurement] :raises TypeError: if the type is not inferrable (pass T) or the type is invalid :raises ValueError: if the predicate function is constant, bounds cannot be inferred, or decision boundary is not within `bounds`. :examples: Find a laplace measurement with the smallest noise scale that is still (d_in, d_out)-close. >>> import opendp.prelude as dp >>> dp.enable_features("floating-point", "contrib") ... >>> # The majority of the chain only needs to be defined once. >>> pre = ( ... dp.space_of(list[float]) >> ... dp.t.then_clamp(bounds=(0., 1.)) >> ... dp.t.then_resize(size=10, constant=0.) >> ... dp.t.then_mean() ... ) ... >>> # Find a value in `bounds` that produces a (`d_in`, `d_out`)-chain nearest the decision boundary. >>> # The lambda function returns the complete computation chain when given a single numeric parameter. >>> chain = dp.binary_search_chain( ... lambda s: pre >> dp.m.then_laplace(scale=s), ... d_in=1, d_out=1.) ... >>> # The resulting computation chain is always (`d_in`, `d_out`)-close, but we can still double-check: >>> assert chain.check(1, 1.) Build a (2 neighboring, 1. epsilon)-close sized bounded sum with discrete_laplace(100.) noise. It should have the widest possible admissible clamping bounds (-b, b). >>> def make_sum(b): ... space = dp.vector_domain(dp.atom_domain((-b, b)), 10_000), dp.symmetric_distance() ... return space >> dp.t.then_sum() >> dp.m.then_laplace(100.) ... >>> # `meas` is a Measurement with the widest possible clamping bounds. >>> meas = dp.binary_search_chain(make_sum, d_in=2, d_out=1., bounds=(0, 10_000)) ... >>> # If you want the discovered clamping bound, use `binary_search_param` instead. """ return make_chain(binary_search_param(make_chain, d_in, d_out, bounds, T))
[docs] def binary_search_param( make_chain: Callable[[float], Union[Transformation, Measurement]], d_in: Any, d_out: Any, bounds: tuple[float, float] | None = None, T=None) -> float: """Solve for the ideal constructor argument to `make_chain`. Optimizes a parameterized chain `make_chain` within float or integer `bounds`, subject to the chained relation being (`d_in`, `d_out`)-close. :param make_chain: a function that takes a number and returns a Transformation or Measurement :param d_in: how far apart input datasets can be :param d_out: how far apart output datasets or distributions can be :param bounds: a 2-tuple of the lower and upper bounds on the input of `make_chain` :param T: type of argument to `make_chain`, one of {float, int} :return: the nearest passing value to the decision point of the relation :raises TypeError: if the type is not inferrable (pass T) or the type is invalid :raises ValueError: if the predicate function is constant, bounds cannot be inferred, or decision boundary is not within `bounds`. :example: >>> import opendp.prelude as dp ... >>> # Find a value in `bounds` that produces a (`d_in`, `d_out`)-chain nearest the decision boundary. >>> # The first argument is any function that returns your complete computation chain >>> # when passed a single numeric parameter. ... >>> def make_fixed_laplace(scale): ... # fixes the input domain and metric, but parameterizes the noise scale ... return dp.m.make_laplace(dp.atom_domain(T=float), dp.absolute_distance(T=float), scale) ... >>> scale = dp.binary_search_param(make_fixed_laplace, d_in=0.1, d_out=1.) >>> assert scale == 0.1 >>> # Constructing the same chain with the discovered parameter will always be (0.1, 1.)-close. >>> assert make_fixed_laplace(scale).check(0.1, 1.) A policy research organization wants to know the smallest sample size necessary to release an "accurate" epsilon=1 DP mean income. Determine the smallest dataset size such that, with 95% confidence, the DP release differs from the clipped dataset's mean by no more than 1000. Assume that neighboring datasets have a symmetric distance at most 2. Also assume a clipping bound of 500,000. >>> # we first work out the necessary noise scale to satisfy the above constraints. >>> necessary_scale = dp.accuracy_to_laplacian_scale(accuracy=1000., alpha=.05) ... >>> # we then write a function that make a computation chain with a given data size >>> def make_mean(data_size): ... return ( ... (dp.vector_domain(dp.atom_domain(bounds=(0., 500_000.)), data_size), dp.symmetric_distance()) >> ... dp.t.then_mean() >> ... dp.m.then_laplace(necessary_scale) ... ) ... >>> # solve for the smallest dataset size that admits a (2 neighboring, 1. epsilon)-close measurement >>> dp.binary_search_param( ... make_mean, ... d_in=2, d_out=1., ... bounds=(1, 1000000)) 1498 """ # one might think running scipy.optimize.brent* would be better, but # 1. benchmarking showed no difference or minor regressions # 2. brentq is more complicated return binary_search(lambda param: make_chain(param).check(d_in, d_out), bounds, T)
# when return sign is false, only return float @overload def binary_search( predicate: Callable[[float], bool], bounds: tuple[float, float] | None = ..., T: Type[float] | None = ..., return_sign: Literal[False] = False) -> float: ... # when setting return sign to true as a keyword argument, return both @overload def binary_search( predicate: Callable[[float], bool], bounds: tuple[float, float] | None = ..., T: Type[float] | None = ..., *, # see https://stackoverflow.com/questions/66435480/overload-following-optional-argument return_sign: Literal[True]) -> tuple[float, int]: ... # when setting return sign to true as a positional argument, return both @overload def binary_search( predicate: Callable[[float], bool], bounds: tuple[float, float] | None, T: Type[float] | None, return_sign: Literal[True]) -> tuple[float, int]: ... _EXPECTED_POLARS_VERSION = '1.1.0' # Keep in sync with setup.cfg.