opendp.trans module#
- opendp.trans.make_bounded_resize(size, bounds, constant, TA=None)[source]#
Make a Transformation that either truncates or imputes records with constant in a Vec<TA> to match a provided size.
- Parameters:
size (int) – Number of records in output data.
bounds (Tuple[Any, Any]) – Tuple of lower and upper bounds for data in the input domain
constant – Value to impute with.
TA (RuntimeTypeDescriptor) – Atomic type. If not passed, TA is inferred from the lower bound.
- Returns:
A vector of the same type TA, but with the provided size.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_bounded_sum(bounds, T=None)[source]#
Make a Transformation that computes the sum of bounded data. Use make_clamp to bound data.
- Parameters:
bounds (Tuple[Any, Any]) – Tuple of lower and upper bounds for data in the input domain
T (RuntimeTypeDescriptor) – atomic type of data
- Returns:
A bounded_sum step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_cast(TIA, TOA)[source]#
Make a Transformation that casts a vector of data from type TIA to type TOA. Failure to parse results in None, else Some<TOA>.
- Parameters:
TIA (RuntimeTypeDescriptor) – atomic input data type to cast from
TOA (RuntimeTypeDescriptor) – atomic data type to cast into
- Returns:
A cast step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_cast_default(TIA, TOA)[source]#
Make a Transformation that casts a vector of data from type TIA to type TOA. If cast fails, fill with default.
- Parameters:
TIA (RuntimeTypeDescriptor) – atomic input data type to cast from
TOA (RuntimeTypeDescriptor) – atomic data type to cast into
- Returns:
A cast_default step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_cast_inherent(TIA, TOA)[source]#
Make a Transformation that casts a vector of data from type TI to a type that can represent nullity TO. If cast fails, fill with TO’s null value.
- Parameters:
TIA (RuntimeTypeDescriptor) – input data type to cast from
TOA (RuntimeTypeDescriptor) – data type to cast into
- Returns:
A cast_inherent step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_cast_metric(MI, MO, TA)[source]#
Make a Transformation that converts the dataset metric from type MI to type MO.
- Parameters:
MI (DatasetMetric) – input dataset metric
MO (DatasetMetric) – output dataset metric
TA (RuntimeTypeDescriptor) – atomic type of data
- Returns:
A cast_metric step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_clamp(bounds, TA=None)[source]#
Make a Transformation that clamps numeric data in Vec<T> to bounds. If datum is less than lower, let datum be lower. If datum is greater than upper, let datum be upper.
- Parameters:
bounds (Tuple[Any, Any]) – Tuple of inclusive lower and upper bounds.
TA (RuntimeTypeDescriptor) – atomic data type
- Returns:
A clamp step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_count(TIA, TO='i32')[source]#
Make a Transformation that computes a count of the number of records in data.
- Parameters:
TIA (RuntimeTypeDescriptor) – Atomic Input Type. Input data is expected to be of the form Vec<TIA>.
TO (RuntimeTypeDescriptor) – Output Type. Must be an integer.
- Returns:
A count step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_count_by(size, MO, TIA, TOA='i32')[source]#
Make a Transformation that computes the count of each unique value in data. This assumes that the category set is unknown. This uses a restricted-sensitivity proof that takes advantage of known dataset size. Use make_resize to establish dataset size. Use meas.make_base_stability to release this query.
- Parameters:
size (int) – Number of records in input data.
MO (SensitivityMetric) – Output Metric.
TIA (RuntimeTypeDescriptor) – Atomic Input Type. Categorical/hashable input data type. Input data must be Vec<TI>.
TOA (RuntimeTypeDescriptor) – Atomic Output Type. Express counts in terms of this integral type.
- Returns:
The carrier type is HashMap<TI, TO>- the counts for each unique data input.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_count_by_categories(categories, MO='L1Distance<i32>', TIA=None, TOA='i32')[source]#
Make a Transformation that computes the number of times each category appears in the data. This assumes that the category set is known.
- Parameters:
categories (Any) – The set of categories to compute counts for.
MO (SensitivityMetric) – output sensitivity metric
TIA (RuntimeTypeDescriptor) – categorical/hashable input type. Input data must be Vec<TIA>.
TOA (RuntimeTypeDescriptor) – express counts in terms of this integral type
- Returns:
A count_by_categories step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_count_distinct(TIA, TO='i32')[source]#
Make a Transformation that computes a count of the number of unique, distinct records in data.
- Parameters:
TIA (RuntimeTypeDescriptor) – Atomic Input Type. Input data is expected to be of the form Vec<TIA>.
TO (RuntimeTypeDescriptor) – Output Type. Must be an integer.
- Returns:
A count_distinct step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_create_dataframe(col_names, K=None)[source]#
Make a Transformation that constructs a dataframe from a Vec<Vec<String>>.
- Parameters:
col_names (Any) – Column names for each record entry.
K (RuntimeTypeDescriptor) – categorical/hashable data type of column names
- Returns:
A create_dataframe step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_identity(D, M)[source]#
Make a Transformation that simply passes the data through.
- Parameters:
D (RuntimeTypeDescriptor) – Domain of the identity function. Must be VectorDomain<AllDomain<_>> or AllDomain<_>
M (RuntimeTypeDescriptor) – metric. Must be a dataset metric if D is a VectorDomain or a sensitivity metric if D is an AllDomain
- Returns:
A transformation where the input and output domain are D and the input and output metric are M
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_impute_constant(constant, DA='OptionNullDomain<AllDomain<TA>>')[source]#
Make a Transformation that replaces null/None data with constant. By default, the input type is Vec<Option<TA>>, as emitted by make_cast. Set DA to InherentNullDomain<AllDomain<TA>> for imputing on types that have an inherent representation of nullity, like floats.
- Parameters:
constant (Any) – Value to replace nulls with.
DA (RuntimeTypeDescriptor) – domain of data being imputed. This is OptionNullDomain<AllDomain<TA>> or InherentNullDomain<AllDomain<TA>>
- Returns:
A impute_constant step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_impute_uniform_float(bounds, TA=None)[source]#
Make a Transformation that replaces null/None data in Vec<TA> with uniformly distributed floats within bounds.
- Parameters:
bounds (Tuple[Any, Any]) – Tuple of inclusive lower and upper bounds.
TA (RuntimeTypeDescriptor) – type of data being imputed
- Returns:
A impute_uniform_float step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_is_equal(value, TIA=None)[source]#
Make a Transformation that checks if each element is equal to value.
- Parameters:
value (Any) – value to check against
TIA (RuntimeTypeDescriptor) – atomic input data type
- Returns:
A is_equal step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_is_null(DIA)[source]#
Make a Transformation that checks if each element in a vector is null.
- Parameters:
DIA (RuntimeTypeDescriptor) – atomic input domain
- Returns:
A is_null step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_resize(size, constant, TA=None)[source]#
Make a Transformation that either truncates or imputes records with constant in a Vec<TA> to match a provided size.
- Parameters:
size (int) – Number of records in output data.
constant (Any) – Value to impute with.
TA (RuntimeTypeDescriptor) – Atomic type.
- Returns:
A vector of the same type TA, but with the provided size.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_select_column(key, TOA, K=None)[source]#
Make a Transformation that retrieves the column key from a dataframe as Vec<TOA>.
- Parameters:
key (Any) – categorical/hashable data type of the key/column name
K (RuntimeTypeDescriptor) – data type of the key
TOA (RuntimeTypeDescriptor) – atomic data type to downcast to
- Returns:
A select_column step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_sized_bounded_mean(size, bounds, T=None)[source]#
Make a Transformation that computes the mean of bounded data. This uses a restricted-sensitivity proof that takes advantage of known dataset size. Use make_clamp to bound data and make_bounded_resize to establish dataset size.
- Parameters:
size (int) – Number of records in input data.
bounds (Tuple[Any, Any]) – Tuple of inclusive lower and upper bounds of the input data.
T (RuntimeTypeDescriptor) – atomic data type
- Returns:
A sized_bounded_mean step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_sized_bounded_sum(size, bounds, T=None)[source]#
Make a Transformation that computes the sum of bounded data with known dataset size. This uses a restricted-sensitivity proof that takes advantage of known dataset size for better utility. Use make_clamp to bound data and make_bounded_resize to establish dataset size.
- Parameters:
size (int) – Number of records in input data.
bounds (Tuple[Any, Any]) – Tuple of lower and upper bounds for input data
T (RuntimeTypeDescriptor) – atomic type of data
- Returns:
A sized_bounded_sum step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_sized_bounded_variance(size, bounds, ddof=1, T=None)[source]#
Make a Transformation that computes the variance of bounded data. This uses a restricted-sensitivity proof that takes advantage of known dataset size. Use make_clamp to bound data and make_bounded_resize to establish dataset size.
- Parameters:
size (int) – Number of records in input data.
bounds (Tuple[Any, Any]) – Tuple of lower and upper bounds for input data
ddof (int) – Delta degrees of freedom. Set to 0 if not a sample, 1 for sample estimate.
T (RuntimeTypeDescriptor) – atomic data type
- Returns:
A sized_bounded_variance step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_split_dataframe(separator, col_names, K=None)[source]#
Make a Transformation that splits each record in a String into a Vec<Vec<String>>, and loads the resulting table into a dataframe keyed by col_names.
- Parameters:
separator (str) – The token(s) that separate entries in each record.
col_names (Any) – Column names for each record entry.
K (RuntimeTypeDescriptor) – categorical/hashable data type of column names
- Returns:
A split_dataframe step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_split_lines()[source]#
Make a Transformation that takes a string and splits it into a Vec<String> of its lines.
- Returns:
A split_lines step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_split_records(separator)[source]#
Make a Transformation that splits each record in a Vec<String> into a Vec<Vec<String>>.
- Parameters:
separator (str) – The token(s) that separate entries in each record.
- Returns:
A split_records step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.trans.make_unclamp(bounds, TA=None)[source]#
Make a Transformation that unclamps a VectorDomain<BoundedDomain<T>> to a VectorDomain<AllDomain<T>>.
- Parameters:
bounds (Tuple[Any, Any]) – Tuple of inclusive lower and upper bounds.
TA (RuntimeTypeDescriptor) – atomic data type
- Returns:
A unclamp step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library