This documentation is for an old version of OpenDP.

The current release of OpenDP is v0.11.1.

Source code for opendp.comb

# Auto-generated. Do not edit.
from opendp._convert import *
from opendp._lib import *
from opendp.mod import *
from opendp.typing import *
from opendp.core import *

__all__ = [
    "make_chain_mt",
    "make_chain_tt",
    "make_basic_composition",
    "make_population_amplification",
    "make_fix_delta",
    "make_zCDP_to_approxDP"
]


[docs] def make_chain_mt( measurement: Measurement, transformation: Transformation ) -> Measurement: """Construct the functional composition (`measurement` ○ `transformation`). Returns a Measurement. :param measurement: outer privatizer :type measurement: Measurement :param transformation: inner query :type transformation: Transformation :return: Measurement representing the chained computation. :rtype: Measurement :raises AssertionError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type-argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ assert_features("contrib") # No type arguments to standardize. # Convert arguments to c types. measurement = py_to_c(measurement, c_type=Measurement) transformation = py_to_c(transformation, c_type=Transformation) # Call library function. function = lib.opendp_comb__make_chain_mt function.argtypes = [Measurement, Transformation] function.restype = FfiResult return c_to_py(unwrap(function(measurement, transformation), Measurement))
[docs] def make_chain_tt( transformation1: Transformation, transformation0: Transformation ) -> Transformation: """Construct the functional composition (`transformation1` ○ `transformation0`). Returns a Transformation. :param transformation1: outer transformation :type transformation1: Transformation :param transformation0: inner transformation :type transformation0: Transformation :return: Transformation representing the chained computation. :rtype: Transformation :raises AssertionError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type-argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ assert_features("contrib") # No type arguments to standardize. # Convert arguments to c types. transformation1 = py_to_c(transformation1, c_type=Transformation) transformation0 = py_to_c(transformation0, c_type=Transformation) # Call library function. function = lib.opendp_comb__make_chain_tt function.argtypes = [Transformation, Transformation] function.restype = FfiResult return c_to_py(unwrap(function(transformation1, transformation0), Transformation))
[docs] def make_basic_composition( measurements: Any ) -> Measurement: """Construct the DP composition [`measurement0`, `measurement1`, ...]. Returns a Measurement. :param measurements: A list of measurements to compose. :type measurements: Any :return: Measurement representing the composed transformations. :rtype: Measurement :raises AssertionError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type-argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ # No type arguments to standardize. # Convert arguments to c types. measurements = py_to_c(measurements, c_type=AnyObjectPtr, type_name=RuntimeType(origin='Vec', args=["AnyMeasurementPtr"])) # Call library function. function = lib.opendp_comb__make_basic_composition function.argtypes = [AnyObjectPtr] function.restype = FfiResult return c_to_py(unwrap(function(measurements), Measurement))
[docs] def make_population_amplification( measurement: Measurement, population_size: int ) -> Measurement: """Construct an amplified measurement from a `measurement` with privacy amplification by subsampling. :param measurement: The measurement to amplify. :type measurement: Measurement :param population_size: Number of records in population. :type population_size: int :return: New measurement with the same function, but an adjusted privacy map. :rtype: Measurement :raises AssertionError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type-argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ # No type arguments to standardize. # Convert arguments to c types. measurement = py_to_c(measurement, c_type=Measurement) population_size = py_to_c(population_size, c_type=ctypes.c_uint) # Call library function. function = lib.opendp_comb__make_population_amplification function.argtypes = [Measurement, ctypes.c_uint] function.restype = FfiResult return c_to_py(unwrap(function(measurement, population_size), Measurement))
[docs] def make_fix_delta( measurement: Measurement, delta: Any ) -> Measurement: """Fix the delta parameter in the privacy map of a `measurement` with a SmoothedMaxDivergence output measure. :param measurement: The measurement with a privacy curve to be fixed. :type measurement: Measurement :param delta: The parameter to fix the privacy curve with. :type delta: Any :return: New measurement with the same function, but a fixed output measure and privacy map. :rtype: Measurement :raises AssertionError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type-argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ # No type arguments to standardize. # Convert arguments to c types. measurement = py_to_c(measurement, c_type=Measurement) delta = py_to_c(delta, c_type=AnyObjectPtr, type_name=get_atom(measurement_output_distance_type(measurement))) # Call library function. function = lib.opendp_comb__make_fix_delta function.argtypes = [Measurement, AnyObjectPtr] function.restype = FfiResult return c_to_py(unwrap(function(measurement, delta), Measurement))
[docs] def make_zCDP_to_approxDP( measurement: Measurement ) -> Measurement: """Constructs a new output measure where output measure is casted from ZeroConcentratedDivergence to SmoothedMaxDivergence. :param measurement: Measurement with ZeroConcentratedDivergence output measure. :type measurement: Measurement :return: Measurement with SmoothedMaxDivergence output measure. :rtype: Measurement :raises AssertionError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type-argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ # No type arguments to standardize. # Convert arguments to c types. measurement = py_to_c(measurement, c_type=Measurement) # Call library function. function = lib.opendp_comb__make_zCDP_to_approxDP function.argtypes = [Measurement] function.restype = FfiResult return c_to_py(unwrap(function(measurement), Measurement))