opendp.typing module#
- class opendp.typing.Carrier(origin, args=None)[source]#
Bases:
RuntimeType
- class opendp.typing.DatasetMetric(origin, args=None)[source]#
Bases:
RuntimeType
All dataset metric RuntimeTypes inherit from DatasetMetric. Provides static type checking in user-code for dataset metrics.
- class opendp.typing.Domain(origin, args=None)[source]#
Bases:
RuntimeType
- class opendp.typing.GenericType(origin, args=None)[source]#
Bases:
RuntimeType
- class opendp.typing.PrivacyMeasure(origin, args=None)[source]#
Bases:
RuntimeType
All measure RuntimeTypes inherit from PrivacyMeasure. Provides static type checking in user-code for privacy measures and a getitem interface like stdlib typing.
- class opendp.typing.RuntimeType(origin, args=None)[source]#
Utility for validating, manipulating, inferring and parsing/normalizing type information.
- classmethod assert_is_similar(expected, inferred)[source]#
Assert that inferred is a member of the same equivalence class as parsed.
- Parameters:
expected – the type that the data will be converted to
inferred – the type inferred from data
- Raises:
TypeError – if expected type differs significantly from inferred type
- classmethod infer(public_example)[source]#
Infer the normalized type from a public example.
- Parameters:
public_example (Any) – data used to infer the type
- Returns:
Normalized type. If the type has subtypes, returns a RuntimeType, else a str.
- Return type:
Union[“RuntimeType”, str]
- Raises:
UnknownTypeException – if inference fails on public_example
- Examples:
>>> from opendp.typing import RuntimeType, L1Distance >>> assert RuntimeType.infer(23) == "i32" >>> assert RuntimeType.infer(12.) == "f64" >>> assert RuntimeType.infer(["A", "B"]) == "Vec<String>" >>> assert RuntimeType.infer((12., True, "A")) == "(f64, bool,String)" # eq doesn't care about whitespace
- classmethod parse(type_name, generics=None)[source]#
Parse type descriptor into a normalized rust type.
Type descriptor may be expressed as:
python type hints from std typing module
plaintext rust type strings for setting specific bit depth
python type class - one of {int, str, float, bool}
tuple of type information - for example: (float, float)
- Parameters:
type_name (RuntimeType | _GenericAlias | str | Type[List | Tuple | int | float | str | bool] | tuple) – type specifier
generics (List[str] | None) – For internal use. List of type names to consider generic when parsing.
- Type:
List[str]
- Returns:
Normalized type. If the type has subtypes, returns a RuntimeType, else a str.
- Return type:
Union[“RuntimeType”, str]
- Raises:
UnknownTypeError – if type_name fails to parse
- Examples:
>>> from opendp.typing import RuntimeType, L1Distance >>> assert RuntimeType.parse(int) == "i32" >>> assert RuntimeType.parse("i32") == "i32" >>> assert RuntimeType.parse(L1Distance[int]) == "L1Distance<i32>" >>> assert RuntimeType.parse(L1Distance["f32"]) == "L1Distance<f32>"
- classmethod parse_or_infer(type_name=None, public_example=None, generics=None)[source]#
If type_name is supplied, normalize it. Otherwise, infer the normalized type from a public example.
- Parameters:
type_name (RuntimeType | _GenericAlias | str | Type[List | Tuple | int | float | str | bool] | tuple | None) – type specifier. See RuntimeType.parse for documentation on valid inputs
public_example (Any | None) – data used to infer the type
generics (List[str] | None) – For internal use. List of type names to consider generic when parsing.
- Returns:
Normalized type. If the type has subtypes, returns a RuntimeType, else a str.
- Return type:
Union[“RuntimeType”, str]
- Type:
List[str]
- Raises:
ValueError – if type_name fails to parse
UnknownTypeException – if inference fails on public_example or no args are supplied
- class opendp.typing.SensitivityMetric(origin, args=None)[source]#
Bases:
RuntimeType
All sensitivity RuntimeTypes inherit from SensitivityMetric. Provides static type checking in user-code for sensitivity metrics and a getitem interface like stdlib typing.
- class opendp.typing.UnknownType(reason)[source]#
Bases:
RuntimeType
Indicator for a type that cannot be inferred. Typically the atomic type of an empty list. RuntimeTypes containing UnknownType cannot be used in FFI, but still pass RuntimeType.assert_is_similar
- opendp.typing.get_atom_or_infer(type_name, example)[source]#
- Parameters:
type_name (RuntimeType) –
- opendp.typing.set_default_float_type(T)[source]#
Set the default float type throughout the library. This function is particularly useful when building computation chains with constructors. When you build a computation chain, any unspecified float types default to this float type.
The default float type is f64. :params T: must be one of [f32, f64]
- Parameters:
T (RuntimeType | _GenericAlias | str | Type[List | Tuple | int | float | str | bool] | tuple) –
- opendp.typing.set_default_int_type(T)[source]#
Set the default integer type throughout the library. This function is particularly useful when building computation chains with constructors. When you build a computation chain, any unspecified integer types default to this int type.
The default int type is i32. :params T: must be one of [u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize]
- Parameters:
T (RuntimeType | _GenericAlias | str | Type[List | Tuple | int | float | str | bool] | tuple) –