This documentation is for an old version of OpenDP.

The current release of OpenDP is v0.11.1.

Source code for opendp.typing

import sys
import typing
from collections.abc import Hashable
from typing import Union, Any, Type, List

from opendp.mod import UnknownTypeException, Measurement, Transformation
from opendp._lib import ATOM_EQUIVALENCE_CLASSES

if sys.version_info >= (3, 7):
    from typing import _GenericAlias
else:
    from typing import GenericMeta as _GenericAlias

ELEMENTARY_TYPES = {
    int: 'i32',
    float: 'f64',
    str: 'String',
    bool: 'bool',
    Measurement: 'AnyMeasurementPtr',
    Transformation: 'AnyTransformationPtr'
}
try:
    import numpy as np
    # https://numpy.org/doc/stable/reference/arrays.scalars.html#sized-aliases
    ELEMENTARY_TYPES.update({
        # np.bytes_: '&[u8]',  # np.string_ # not used in OpenDP
        np.str_: 'String',  # np.unicode_
        np.bool8: 'bool',  # np.bool_
        np.int8: 'i8',  # np.byte
        np.int16: 'i16',  # np.short
        np.int32: 'i32',  # np.intc
        np.int64: 'i64',  # np.int_
        np.longlong: 'i128',
        np.uint8: 'u8',  # np.ubyte
        np.uint16: 'u16',  # np.ushort
        np.uint32: 'u32',  # np.uintc
        np.uint64: 'u64',
        np.ulonglong: 'u128',
        # np.intp: 'isize',  # not used in OpenDP
        # np.uintp: 'usize', # an alias for one of np.uint* that would overwrite the respective key
        # np.float16: 'f16',  # not used in OpenDP
        np.float32: 'f32',
        np.float64: 'f64',  # np.double, np.float_
    })
except ImportError:
    np = None

# all ways of providing type information
RuntimeTypeDescriptor = Union[
    "RuntimeType",  # as the normalized type -- ChangeOneDistance; RuntimeType.parse("i32")
    _GenericAlias,  # a Python type hint from the std typing module -- List[int]
    str,  # plaintext string in terms of Rust types -- "Vec<i32>"
    Type[Union[typing.List, typing.Tuple, int, float, str, bool]],  # using the Python type class itself -- int, float
    tuple,  # shorthand for tuples -- (float, "f64"); (ChangeOneDistance, List[int])
]


[docs] def set_default_int_type(T: RuntimeTypeDescriptor): """Set the default integer type throughout the library. This function is particularly useful when building computation chains with constructors. When you build a computation chain, any unspecified integer types default to this int type. The default int type is i32. :params T: must be one of [u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize] :type T: :ref:`RuntimeTypeDescriptor` """ equivalence_class = ATOM_EQUIVALENCE_CLASSES[ELEMENTARY_TYPES[int]] assert T in equivalence_class, f"T must be one of {equivalence_class}" ATOM_EQUIVALENCE_CLASSES[T] = ATOM_EQUIVALENCE_CLASSES.pop(ELEMENTARY_TYPES[int]) ELEMENTARY_TYPES[int] = T
[docs] def set_default_float_type(T: RuntimeTypeDescriptor): """Set the default float type throughout the library. This function is particularly useful when building computation chains with constructors. When you build a computation chain, any unspecified float types default to this float type. The default float type is f64. :params T: must be one of [f32, f64] :type T: :ref:`RuntimeTypeDescriptor` """ equivalence_class = ATOM_EQUIVALENCE_CLASSES[ELEMENTARY_TYPES[float]] assert T in equivalence_class, f"T must be a float type in {equivalence_class}" ATOM_EQUIVALENCE_CLASSES[T] = ATOM_EQUIVALENCE_CLASSES.pop(ELEMENTARY_TYPES[float]) ELEMENTARY_TYPES[float] = T
[docs] class RuntimeType(object): """Utility for validating, manipulating, inferring and parsing/normalizing type information. """ def __init__(self, origin, args=None): if not isinstance(origin, str): raise ValueError("origin must be a string", origin) self.origin = origin self.args = args def __eq__(self, other): if isinstance(other, str): other = RuntimeType.parse(other) if isinstance(other, str): return False return self.origin == other.origin and self.args == other.args def __str__(self): result = self.origin or '' if result == 'Tuple': return f'({", ".join(map(str, self.args))})' if self.args: result += f'<{", ".join(map(str, self.args))}>' return result
[docs] @classmethod def parse(cls, type_name: RuntimeTypeDescriptor, generics: List[str] = None) -> Union["RuntimeType", str]: """Parse type descriptor into a normalized Rust type. Type descriptor may be expressed as: - Python type hints from std typing module - plaintext Rust type strings for setting specific bit depth - Python type class - one of {int, str, float, bool} - tuple of type information - for example: (float, float) :param type_name: type specifier :param generics: For internal use. List of type names to consider generic when parsing. :type: List[str] :return: Normalized type. If the type has subtypes, returns a RuntimeType, else a str. :rtype: Union["RuntimeType", str] :raises UnknownTypeError: if `type_name` fails to parse :examples: >>> from opendp.typing import RuntimeType, L1Distance >>> assert RuntimeType.parse(int) == "i32" >>> assert RuntimeType.parse("i32") == "i32" >>> assert RuntimeType.parse(L1Distance[int]) == "L1Distance<i32>" >>> assert RuntimeType.parse(L1Distance["f32"]) == "L1Distance<f32>" """ generics = generics or [] if isinstance(type_name, RuntimeType): return type_name # parse type hints from the typing module if isinstance(type_name, _GenericAlias): if sys.version_info < (3, 8): raise NotImplementedError("parsing type hint annotations are only supported in Python 3.8 and above") origin = typing.get_origin(type_name) args = [RuntimeType.parse(v, generics=generics) for v in typing.get_args(type_name)] or None if origin == tuple: origin = 'Tuple' if origin == list: origin = 'Vec' return RuntimeType(RuntimeType.parse(origin, generics=generics), args) # parse a tuple of types-- (int, "f64"); (List[int], (int, bool)) if isinstance(type_name, tuple): return RuntimeType('Tuple', list(cls.parse(v, generics=generics) for v in type_name)) # parse a string-- "Vec<f32>", if isinstance(type_name, str): type_name = type_name.strip() if type_name in generics: return GenericType(type_name) if type_name.startswith('(') and type_name.endswith(')'): return RuntimeType('Tuple', cls._parse_args(type_name[1:-1], generics=generics)) start, end = type_name.find('<'), type_name.rfind('>') # attempt to upgrade strings to the metric/measure instance origin = type_name[:start] if 0 < start else type_name closeness = { 'ChangeOneDistance': ChangeOneDistance, 'SymmetricDistance': SymmetricDistance, 'AbsoluteDistance': AbsoluteDistance, 'L1Distance': L1Distance, 'L2Distance': L2Distance, 'MaxDivergence': MaxDivergence, 'SmoothedMaxDivergence': SmoothedMaxDivergence }.get(origin) if closeness is not None: if isinstance(closeness, (SensitivityMetric, PrivacyMeasure)): return closeness[cls._parse_args(type_name[start + 1: end], generics=generics)[0]] return closeness domain = { 'AllDomain': AllDomain, 'BoundedDomain': BoundedDomain, 'VectorDomain': VectorDomain, 'OptionNullDomain': OptionNullDomain, 'InherentNullDomain': InherentNullDomain, 'SizedDomain': SizedDomain }.get(origin) if domain is not None: return domain[cls._parse_args(type_name[start + 1: end], generics=generics)[0]] if 0 < start < end < len(type_name): return RuntimeType(origin, args=cls._parse_args(type_name[start + 1: end], generics=generics)) if start == end < 0: if type_name == "int": return ELEMENTARY_TYPES[int] if type_name == "float": return ELEMENTARY_TYPES[float] return type_name if isinstance(type_name, Hashable) and type_name in ELEMENTARY_TYPES: return ELEMENTARY_TYPES[type_name] if type_name == tuple: raise UnknownTypeException(f"non-parameterized argument") raise UnknownTypeException(f"unable to parse type: {type_name}")
@classmethod def _parse_args(cls, args, generics=None): import re return [cls.parse(v, generics=generics) for v in re.split(r",\s*(?![^()<>]*\))", args)]
[docs] @classmethod def infer(cls, public_example: Any) -> Union["RuntimeType", str]: """Infer the normalized type from a public example. :param public_example: data used to infer the type :return: Normalized type. If the type has subtypes, returns a RuntimeType, else a str. :rtype: Union["RuntimeType", str] :raises UnknownTypeException: if inference fails on `public_example` :examples: >>> from opendp.typing import RuntimeType, L1Distance >>> assert RuntimeType.infer(23) == "i32" >>> assert RuntimeType.infer(12.) == "f64" >>> assert RuntimeType.infer(["A", "B"]) == "Vec<String>" >>> assert RuntimeType.infer((12., True, "A")) == "(f64, bool,String)" # eq doesn't care about whitespace """ if type(public_example) in ELEMENTARY_TYPES: return ELEMENTARY_TYPES[type(public_example)] if isinstance(public_example, tuple): return RuntimeType('Tuple', list(map(cls.infer, public_example))) if isinstance(public_example, list): if public_example: inner_type = cls.infer(public_example[0]) for inner in public_example[1:]: other_type = cls.infer(inner) if other_type != inner_type: raise TypeError(f"vectors must be homogeneously typed, found {inner_type} and {other_type}") else: inner_type = UnknownType("cannot infer atomic type of empty list") return RuntimeType('Vec', [inner_type]) if np is not None and isinstance(public_example, np.ndarray): if public_example.ndim == 0: return cls.infer(public_example.item()) if public_example.ndim == 1: inner_type = ELEMENTARY_TYPES.get(public_example.dtype.type) if inner_type is None: raise UnknownTypeException(f"Unknown numpy array dtype: {public_example.dtype.type}") return RuntimeType('Vec', [inner_type]) raise UnknownTypeException("arrays with greater than one axis are not yet supported") if isinstance(public_example, dict): return RuntimeType('HashMap', [ cls.infer(next(iter(public_example.keys()))), cls.infer(next(iter(public_example.values()))) ]) if isinstance(public_example, Measurement): return "AnyMeasurementPtr" if isinstance(public_example, Transformation): return "AnyTransformationPtr" if public_example is None: return RuntimeType('Option', [UnknownType("Constructed Option from a None variant")]) raise UnknownTypeException(type(public_example))
[docs] @classmethod def parse_or_infer( cls, type_name: RuntimeTypeDescriptor = None, public_example: Any = None, generics: List[str] = None ) -> Union["RuntimeType", str]: """If type_name is supplied, normalize it. Otherwise, infer the normalized type from a public example. :param type_name: type specifier. See RuntimeType.parse for documentation on valid inputs :param public_example: data used to infer the type :return: Normalized type. If the type has subtypes, returns a RuntimeType, else a str. :rtype: Union["RuntimeType", str] :param generics: For internal use. List of type names to consider generic when parsing. :type: List[str] :raises ValueError: if `type_name` fails to parse :raises UnknownTypeException: if inference fails on `public_example` or no args are supplied """ if type_name is not None: return cls.parse(type_name, generics) if public_example is not None: return cls.infer(public_example) raise UnknownTypeException("either type_name or public_example must be passed")
[docs] @classmethod def assert_is_similar(cls, expected, inferred): """Assert that `inferred` is a member of the same equivalence class as `parsed`. :param expected: the type that the data will be converted to :param inferred: the type inferred from data :raises TypeError: if `expected` type differs significantly from `inferred` type """ ERROR_URL_298 = "https://github.com/opendp/opendp/discussions/298" if isinstance(inferred, UnknownType): return if isinstance(expected, str) and isinstance(inferred, str): if inferred in ATOM_EQUIVALENCE_CLASSES: if expected not in ATOM_EQUIVALENCE_CLASSES[inferred]: raise TypeError(f"inferred type is {inferred}, expected {expected}. See {ERROR_URL_298}") else: if expected != inferred: raise TypeError(f"inferred type is {inferred}, expected {expected}. See {ERROR_URL_298}") elif isinstance(expected, RuntimeType) and isinstance(inferred, RuntimeType): # allow extra flexibility around options, as the inferred type of an Option::<T>::Some will just be T if expected.origin == "Option" and inferred.origin != "Option": expected = expected.args[0] if expected.origin != inferred.origin: raise TypeError(f"inferred type is {inferred.origin}, expected {expected.origin}. See {ERROR_URL_298}") if len(expected.args) != len(inferred.args): raise TypeError(f"inferred type has {len(inferred.args)} arg(s), expected {len(expected.args)} arg(s). See {ERROR_URL_298}") for (arg_par, arg_inf) in zip(expected.args, inferred.args): RuntimeType.assert_is_similar(arg_par, arg_inf) else: # inferred type differs in structure raise TypeError(f"inferred type is {inferred}, expected {expected}. See {ERROR_URL_298}")
[docs] def substitute(self, **kwargs): if isinstance(self, GenericType): return kwargs.get(self.origin, self) if isinstance(self, RuntimeType): return RuntimeType(self.origin, self.args and [RuntimeType.substitute(arg, **kwargs) for arg in self.args]) return self
[docs] class GenericType(RuntimeType): def __str__(self): raise UnknownTypeException(f"attempted to create a type_name with an unknown generic: {self.origin}")
[docs] class UnknownType(RuntimeType): """Indicator for a type that cannot be inferred. Typically the atomic type of an empty list. RuntimeTypes containing UnknownType cannot be used in FFI, but still pass RuntimeType.assert_is_similar """ def __init__(self, reason): self.origin = None self.args = [] self.reason = reason def __str__(self): raise UnknownTypeException(f"attempted to create a type_name with an unknown type: {self.reason}")
[docs] class DatasetMetric(RuntimeType): """All dataset metric RuntimeTypes inherit from DatasetMetric. Provides static type checking in user-code for dataset metrics. """ pass
SymmetricDistance = DatasetMetric('SymmetricDistance') InsertDeleteDistance = DatasetMetric('InsertDeleteDistance') ChangeOneDistance = DatasetMetric('ChangeOneDistance') HammingDistance = DatasetMetric('HammingDistance')
[docs] class SensitivityMetric(RuntimeType): """All sensitivity RuntimeTypes inherit from SensitivityMetric. Provides static type checking in user-code for sensitivity metrics and a getitem interface like stdlib typing. """ def __getitem__(self, associated_type): return SensitivityMetric(self.origin, [self.parse(type_name=associated_type)])
AbsoluteDistance = SensitivityMetric('AbsoluteDistance') L1Distance = SensitivityMetric('L1Distance') L2Distance = SensitivityMetric('L2Distance')
[docs] class PrivacyMeasure(RuntimeType): """All measure RuntimeTypes inherit from PrivacyMeasure. Provides static type checking in user-code for privacy measures and a getitem interface like stdlib typing. """ def __getitem__(self, associated_type): return PrivacyMeasure(self.origin, [self.parse(type_name=associated_type)])
MaxDivergence = PrivacyMeasure('MaxDivergence') SmoothedMaxDivergence = PrivacyMeasure('SmoothedMaxDivergence') ZeroConcentratedDivergence = PrivacyMeasure('ZeroConcentratedDivergence')
[docs] class Carrier(RuntimeType): def __getitem__(self, subdomains): if not isinstance(subdomains, tuple): subdomains = (subdomains,) return Carrier(self.origin, [self.parse(type_name=subdomain) for subdomain in subdomains])
Vec = Carrier('Vec') HashMap = Carrier('HashMap') i8 = 'i8' i16 = 'i16' i32 = 'i32' i64 = 'i64' i128 = 'i128' isize = 'isize' u8 = 'u8' u16 = 'u16' u32 = 'u32' u64 = 'u64' u128 = 'u128' usize = 'usize' f32 = 'f32' f64 = 'f64' String = 'String' AnyMeasurementPtr = "AnyMeasurementPtr" AnyTransformationPtr = "AnyTransformationPtr"
[docs] class Domain(RuntimeType): def __getitem__(self, subdomain): return Domain(self.origin, [self.parse(type_name=subdomain)])
AllDomain = Domain('AllDomain') BoundedDomain = Domain('BoundedDomain') VectorDomain = Domain('VectorDomain') OptionNullDomain = Domain('OptionNullDomain') InherentNullDomain = Domain('InherentNullDomain') SizedDomain = Domain('SizedDomain')
[docs] def get_atom(type_name): type_name = RuntimeType.parse(type_name) while isinstance(type_name, RuntimeType): if isinstance(type_name, (UnknownType, GenericType)): return type_name = type_name.args[0] return type_name
[docs] def get_atom_or_infer(type_name: RuntimeType, example): return get_atom(type_name) or RuntimeType.infer(example)
[docs] def get_first(value): return next(iter(value), None)
[docs] def parse_or_infer(type_name: RuntimeType, example): return RuntimeType.parse_or_infer(type_name, example)