This documentation is for an old version of OpenDP.

The current release of OpenDP is v0.11.1.

Source code for opendp.measurements

# Auto-generated. Do not edit.
from opendp._convert import *
from opendp._lib import *
from opendp.mod import *
from opendp.typing import *

__all__ = [
    "make_base_discrete_gaussian",
    "make_base_discrete_laplace",
    "make_base_discrete_laplace_cks20",
    "make_base_discrete_laplace_linear",
    "make_base_gaussian",
    "make_base_geometric",
    "make_base_laplace",
    "make_base_ptr",
    "make_randomized_response",
    "make_randomized_response_bool"
]


[docs] @versioned def make_base_discrete_gaussian( scale, D: RuntimeTypeDescriptor = "AtomDomain<int>", MO: RuntimeTypeDescriptor = "ZeroConcentratedDivergence<QO>", QI: RuntimeTypeDescriptor = "int" ) -> Measurement: """Make a Measurement that adds noise from the discrete_gaussian(`scale`) distribution to the input. Set `D` to change the input data type and input metric: | `D` | input type | `D::InputMetric` | | ---------------------------- | ------------ | ----------------------- | | `AtomDomain<T>` (default) | `T` | `AbsoluteDistance<QI>` | | `VectorDomain<AtomDomain<T>>` | `Vec<T>` | `L2Distance<QI>` | [make_base_discrete_gaussian in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_base_discrete_gaussian.html) **Supporting Elements:** * Input Domain: `D` * Output Type: `D::Carrier` * Input Metric: `D::InputMetric` * Output Measure: `MO` :param scale: Noise scale parameter for the gaussian distribution. `scale` == standard_deviation. :param D: Domain of the data type to be privatized. Valid values are `VectorDomain<AtomDomain<T>>` or `AtomDomain<T>`. :type D: :py:ref:`RuntimeTypeDescriptor` :param MO: Output measure. The only valid measure is `ZeroConcentratedDivergence<QO>`, but QO can be any float. :type MO: :py:ref:`RuntimeTypeDescriptor` :param QI: Input distance. The type of sensitivities. Can be any integer or float. :type QI: :py:ref:`RuntimeTypeDescriptor` :rtype: Measurement :raises TypeError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ assert_features("contrib") # Standardize type arguments. D = RuntimeType.parse(type_name=D) MO = RuntimeType.parse(type_name=MO, generics=["QO"]) QI = RuntimeType.parse(type_name=QI) QO = get_atom_or_infer(MO, scale) MO = MO.substitute(QO=QO) # Convert arguments to c types. c_scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=QO) c_D = py_to_c(D, c_type=ctypes.c_char_p) c_MO = py_to_c(MO, c_type=ctypes.c_char_p) c_QI = py_to_c(QI, c_type=ctypes.c_char_p) # Call library function. lib_function = lib.opendp_measurements__make_base_discrete_gaussian lib_function.argtypes = [ctypes.c_void_p, ctypes.c_char_p, ctypes.c_char_p, ctypes.c_char_p] lib_function.restype = FfiResult output = c_to_py(unwrap(lib_function(c_scale, c_D, c_MO, c_QI), Measurement)) return output
[docs] @versioned def make_base_discrete_laplace( scale, D: RuntimeTypeDescriptor = "AtomDomain<int>", QO: RuntimeTypeDescriptor = None ) -> Measurement: """Make a Measurement that adds noise from the discrete_laplace(`scale`) distribution to the input. Set `D` to change the input data type and input metric: | `D` | input type | `D::InputMetric` | | ---------------------------- | ------------ | ---------------------- | | `AtomDomain<T>` (default) | `T` | `AbsoluteDistance<T>` | | `VectorDomain<AtomDomain<T>>` | `Vec<T>` | `L1Distance<T>` | This uses `make_base_discrete_laplace_cks20` if scale is greater than 10, otherwise it uses `make_base_discrete_laplace_linear`. [make_base_discrete_laplace in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_base_discrete_laplace.html) **Citations:** * [GRS12 Universally Utility-Maximizing Privacy Mechanisms](https://theory.stanford.edu/~tim/papers/priv.pdf) * [CKS20 The Discrete Gaussian for Differential Privacy](https://arxiv.org/pdf/2004.00010.pdf#subsection.5.2) **Supporting Elements:** * Input Domain: `D` * Output Type: `D::Carrier` * Input Metric: `D::InputMetric` * Output Measure: `MaxDivergence<QO>` :param scale: Noise scale parameter for the laplace distribution. `scale` == sqrt(2) * standard_deviation. :param D: Domain of the data type to be privatized. Valid values are `VectorDomain<AtomDomain<T>>` or `AtomDomain<T>` :type D: :py:ref:`RuntimeTypeDescriptor` :param QO: Data type of the output distance and scale. `f32` or `f64`. :type QO: :py:ref:`RuntimeTypeDescriptor` :rtype: Measurement :raises TypeError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ assert_features("contrib") # Standardize type arguments. D = RuntimeType.parse(type_name=D) QO = RuntimeType.parse_or_infer(type_name=QO, public_example=scale) # Convert arguments to c types. c_scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=QO) c_D = py_to_c(D, c_type=ctypes.c_char_p) c_QO = py_to_c(QO, c_type=ctypes.c_char_p) # Call library function. lib_function = lib.opendp_measurements__make_base_discrete_laplace lib_function.argtypes = [ctypes.c_void_p, ctypes.c_char_p, ctypes.c_char_p] lib_function.restype = FfiResult output = c_to_py(unwrap(lib_function(c_scale, c_D, c_QO), Measurement)) return output
[docs] @versioned def make_base_discrete_laplace_cks20( scale, D: RuntimeTypeDescriptor = "AtomDomain<int>", QO: RuntimeTypeDescriptor = None ) -> Measurement: """Make a Measurement that adds noise from the discrete_laplace(`scale`) distribution to the input, using an efficient algorithm on rational bignums. Set `D` to change the input data type and input metric: | `D` | input type | `D::InputMetric` | | ---------------------------- | ------------ | ---------------------- | | `AtomDomain<T>` (default) | `T` | `AbsoluteDistance<T>` | | `VectorDomain<AtomDomain<T>>` | `Vec<T>` | `L1Distance<T>` | [make_base_discrete_laplace_cks20 in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_base_discrete_laplace_cks20.html) **Citations:** * [CKS20 The Discrete Gaussian for Differential Privacy](https://arxiv.org/pdf/2004.00010.pdf#subsection.5.2) **Supporting Elements:** * Input Domain: `D` * Output Type: `D::Carrier` * Input Metric: `D::InputMetric` * Output Measure: `MaxDivergence<QO>` :param scale: Noise scale parameter for the laplace distribution. `scale` == sqrt(2) * standard_deviation. :param D: Domain of the data type to be privatized. Valid values are `VectorDomain<AtomDomain<T>>` or `AtomDomain<T>` :type D: :py:ref:`RuntimeTypeDescriptor` :param QO: Data type of the output distance and scale. :type QO: :py:ref:`RuntimeTypeDescriptor` :rtype: Measurement :raises TypeError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ assert_features("contrib") # Standardize type arguments. D = RuntimeType.parse(type_name=D) QO = RuntimeType.parse_or_infer(type_name=QO, public_example=scale) # Convert arguments to c types. c_scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=QO) c_D = py_to_c(D, c_type=ctypes.c_char_p) c_QO = py_to_c(QO, c_type=ctypes.c_char_p) # Call library function. lib_function = lib.opendp_measurements__make_base_discrete_laplace_cks20 lib_function.argtypes = [ctypes.c_void_p, ctypes.c_char_p, ctypes.c_char_p] lib_function.restype = FfiResult output = c_to_py(unwrap(lib_function(c_scale, c_D, c_QO), Measurement)) return output
[docs] @versioned def make_base_discrete_laplace_linear( scale, bounds: Any = None, D: RuntimeTypeDescriptor = "AtomDomain<int>", QO: RuntimeTypeDescriptor = None ) -> Measurement: """Make a Measurement that adds noise from the discrete_laplace(`scale`) distribution to the input, using a linear-time algorithm on finite data types. This algorithm can be executed in constant time if bounds are passed. Set `D` to change the input data type and input metric: | `D` | input type | `D::InputMetric` | | ---------------------------- | ------------ | ---------------------- | | `AtomDomain<T>` (default) | `T` | `AbsoluteDistance<T>` | | `VectorDomain<AtomDomain<T>>` | `Vec<T>` | `L1Distance<T>` | [make_base_discrete_laplace_linear in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_base_discrete_laplace_linear.html) **Citations:** * [GRS12 Universally Utility-Maximizing Privacy Mechanisms](https://theory.stanford.edu/~tim/papers/priv.pdf) **Supporting Elements:** * Input Domain: `D` * Output Type: `D::Carrier` * Input Metric: `D::InputMetric` * Output Measure: `MaxDivergence<QO>` :param scale: Noise scale parameter for the distribution. `scale` == sqrt(2) * standard_deviation. :param bounds: Set bounds on the count to make the algorithm run in constant-time. :type bounds: Any :param D: Domain of the data type to be privatized. Valid values are `VectorDomain<AtomDomain<T>>` or `AtomDomain<T>` :type D: :py:ref:`RuntimeTypeDescriptor` :param QO: Data type of the scale and output distance. :type QO: :py:ref:`RuntimeTypeDescriptor` :rtype: Measurement :raises TypeError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ assert_features("contrib") # Standardize type arguments. D = RuntimeType.parse(type_name=D) QO = RuntimeType.parse_or_infer(type_name=QO, public_example=scale) T = get_atom(D) OptionT = RuntimeType(origin='Option', args=[RuntimeType(origin='Tuple', args=[T, T])]) # Convert arguments to c types. c_scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=QO) c_bounds = py_to_c(bounds, c_type=AnyObjectPtr, type_name=OptionT) c_D = py_to_c(D, c_type=ctypes.c_char_p) c_QO = py_to_c(QO, c_type=ctypes.c_char_p) # Call library function. lib_function = lib.opendp_measurements__make_base_discrete_laplace_linear lib_function.argtypes = [ctypes.c_void_p, AnyObjectPtr, ctypes.c_char_p, ctypes.c_char_p] lib_function.restype = FfiResult output = c_to_py(unwrap(lib_function(c_scale, c_bounds, c_D, c_QO), Measurement)) return output
[docs] @versioned def make_base_gaussian( scale, k: int = -1074, D: RuntimeTypeDescriptor = "AtomDomain<T>", MO: RuntimeTypeDescriptor = "ZeroConcentratedDivergence<T>" ) -> Measurement: """Make a Measurement that adds noise from the gaussian(`scale`) distribution to the input. Set `D` to change the input data type and input metric: | `D` | input type | `D::InputMetric` | | ---------------------------- | ------------ | ---------------------- | | `AtomDomain<T>` (default) | `T` | `AbsoluteDistance<T>` | | `VectorDomain<AtomDomain<T>>` | `Vec<T>` | `L2Distance<T>` | This function takes a noise granularity in terms of 2^k. Larger granularities are more computationally efficient, but have a looser privacy map. If k is not set, k defaults to the smallest granularity. [make_base_gaussian in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_base_gaussian.html) **Supporting Elements:** * Input Domain: `D` * Output Type: `D::Carrier` * Input Metric: `D::InputMetric` * Output Measure: `MO` :param scale: Noise scale parameter for the gaussian distribution. `scale` == standard_deviation. :param k: The noise granularity in terms of 2^k. :type k: int :param D: Domain of the data type to be privatized. Valid values are `VectorDomain<AtomDomain<T>>` or `AtomDomain<T>`. :type D: :py:ref:`RuntimeTypeDescriptor` :param MO: Output Measure. The only valid measure is `ZeroConcentratedDivergence<T>`. :type MO: :py:ref:`RuntimeTypeDescriptor` :rtype: Measurement :raises TypeError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ assert_features("contrib") # Standardize type arguments. D = RuntimeType.parse(type_name=D, generics=["T"]) MO = RuntimeType.parse(type_name=MO, generics=["T"]) T = get_atom_or_infer(D, scale) D = D.substitute(T=T) MO = MO.substitute(T=T) # Convert arguments to c types. c_scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=T) c_k = py_to_c(k, c_type=ctypes.c_uint32, type_name=i32) c_D = py_to_c(D, c_type=ctypes.c_char_p) c_MO = py_to_c(MO, c_type=ctypes.c_char_p) # Call library function. lib_function = lib.opendp_measurements__make_base_gaussian lib_function.argtypes = [ctypes.c_void_p, ctypes.c_uint32, ctypes.c_char_p, ctypes.c_char_p] lib_function.restype = FfiResult output = c_to_py(unwrap(lib_function(c_scale, c_k, c_D, c_MO), Measurement)) return output
[docs] @versioned def make_base_geometric( scale, bounds: Any = None, D: RuntimeTypeDescriptor = "AtomDomain<int>", QO: RuntimeTypeDescriptor = None ) -> Measurement: """Deprecated. Use `make_base_discrete_laplace` instead (more efficient). `make_base_discrete_laplace_linear` has a similar interface with the optional constant-time bounds. [make_base_geometric in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_base_geometric.html) **Supporting Elements:** * Input Domain: `D` * Output Type: `D::Carrier` * Input Metric: `D::InputMetric` * Output Measure: `MaxDivergence<QO>` :param scale: :param bounds: :type bounds: Any :param D: :type D: :py:ref:`RuntimeTypeDescriptor` :param QO: :type QO: :py:ref:`RuntimeTypeDescriptor` :rtype: Measurement :raises TypeError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ assert_features("contrib") # Standardize type arguments. D = RuntimeType.parse(type_name=D) QO = RuntimeType.parse_or_infer(type_name=QO, public_example=scale) T = get_atom(D) OptionT = RuntimeType(origin='Option', args=[RuntimeType(origin='Tuple', args=[T, T])]) # Convert arguments to c types. c_scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=QO) c_bounds = py_to_c(bounds, c_type=AnyObjectPtr, type_name=OptionT) c_D = py_to_c(D, c_type=ctypes.c_char_p) c_QO = py_to_c(QO, c_type=ctypes.c_char_p) # Call library function. lib_function = lib.opendp_measurements__make_base_geometric lib_function.argtypes = [ctypes.c_void_p, AnyObjectPtr, ctypes.c_char_p, ctypes.c_char_p] lib_function.restype = FfiResult output = c_to_py(unwrap(lib_function(c_scale, c_bounds, c_D, c_QO), Measurement)) return output
[docs] @versioned def make_base_laplace( scale, k: int = -1074, D: RuntimeTypeDescriptor = "AtomDomain<T>" ) -> Measurement: """Make a Measurement that adds noise from the laplace(`scale`) distribution to a scalar value. Set `D` to change the input data type and input metric: | `D` | input type | `D::InputMetric` | | ---------------------------- | ------------ | ---------------------- | | `AtomDomain<T>` (default) | `T` | `AbsoluteDistance<T>` | | `VectorDomain<AtomDomain<T>>` | `Vec<T>` | `L1Distance<T>` | This function takes a noise granularity in terms of 2^k. Larger granularities are more computationally efficient, but have a looser privacy map. If k is not set, k defaults to the smallest granularity. [make_base_laplace in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_base_laplace.html) **Supporting Elements:** * Input Domain: `D` * Output Type: `D::Carrier` * Input Metric: `D::InputMetric` * Output Measure: `MaxDivergence<D::Atom>` :param scale: Noise scale parameter for the laplace distribution. `scale` == sqrt(2) * standard_deviation. :param k: The noise granularity in terms of 2^k. :type k: int :param D: Domain of the data type to be privatized. Valid values are `VectorDomain<AtomDomain<T>>` or `AtomDomain<T>` :type D: :py:ref:`RuntimeTypeDescriptor` :rtype: Measurement :raises TypeError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ assert_features("contrib") # Standardize type arguments. D = RuntimeType.parse(type_name=D, generics=["T"]) T = get_atom_or_infer(D, scale) D = D.substitute(T=T) # Convert arguments to c types. c_scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=T) c_k = py_to_c(k, c_type=ctypes.c_uint32, type_name=i32) c_D = py_to_c(D, c_type=ctypes.c_char_p) # Call library function. lib_function = lib.opendp_measurements__make_base_laplace lib_function.argtypes = [ctypes.c_void_p, ctypes.c_uint32, ctypes.c_char_p] lib_function.restype = FfiResult output = c_to_py(unwrap(lib_function(c_scale, c_k, c_D), Measurement)) return output
[docs] @versioned def make_base_ptr( scale, threshold, TK: RuntimeTypeDescriptor, k: int = -1074, TV: RuntimeTypeDescriptor = None ) -> Measurement: """Make a Measurement that uses propose-test-release to privatize a hashmap of counts. This function takes a noise granularity in terms of 2^k. Larger granularities are more computationally efficient, but have a looser privacy map. If k is not set, k defaults to the smallest granularity. [make_base_ptr in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_base_ptr.html) **Supporting Elements:** * Input Domain: `MapDomain<AtomDomain<TK>, AtomDomain<TV>>` * Output Type: `HashMap<TK, TV>` * Input Metric: `L1Distance<TV>` * Output Measure: `SmoothedMaxDivergence<TV>` :param scale: Noise scale parameter for the laplace distribution. `scale` == sqrt(2) * standard_deviation. :param threshold: Exclude counts that are less than this minimum value. :param k: The noise granularity in terms of 2^k. :type k: int :param TK: Type of Key. Must be hashable/categorical. :type TK: :py:ref:`RuntimeTypeDescriptor` :param TV: Type of Value. Must be float. :type TV: :py:ref:`RuntimeTypeDescriptor` :rtype: Measurement :raises TypeError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ assert_features("contrib", "floating-point") # Standardize type arguments. TK = RuntimeType.parse(type_name=TK) TV = RuntimeType.parse_or_infer(type_name=TV, public_example=scale) # Convert arguments to c types. c_scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=TV) c_threshold = py_to_c(threshold, c_type=ctypes.c_void_p, type_name=TV) c_k = py_to_c(k, c_type=ctypes.c_uint32, type_name=i32) c_TK = py_to_c(TK, c_type=ctypes.c_char_p) c_TV = py_to_c(TV, c_type=ctypes.c_char_p) # Call library function. lib_function = lib.opendp_measurements__make_base_ptr lib_function.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_uint32, ctypes.c_char_p, ctypes.c_char_p] lib_function.restype = FfiResult output = c_to_py(unwrap(lib_function(c_scale, c_threshold, c_k, c_TK, c_TV), Measurement)) return output
[docs] @versioned def make_randomized_response( categories: Any, prob, constant_time: bool = False, T: RuntimeTypeDescriptor = None, QO: RuntimeTypeDescriptor = None ) -> Measurement: """Make a Measurement that implements randomized response on a categorical value. [make_randomized_response in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_randomized_response.html) **Supporting Elements:** * Input Domain: `AtomDomain<T>` * Output Type: `T` * Input Metric: `DiscreteDistance` * Output Measure: `MaxDivergence<QO>` :param categories: Set of valid outcomes :type categories: Any :param prob: Probability of returning the correct answer. Must be in `[1/num_categories, 1)` :param constant_time: Set to true to enable constant time. Slower. :type constant_time: bool :param T: Data type of a category. :type T: :py:ref:`RuntimeTypeDescriptor` :param QO: Data type of probability and output distance. :type QO: :py:ref:`RuntimeTypeDescriptor` :rtype: Measurement :raises TypeError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ assert_features("contrib") # Standardize type arguments. T = RuntimeType.parse_or_infer(type_name=T, public_example=get_first(categories)) QO = RuntimeType.parse_or_infer(type_name=QO, public_example=prob) # Convert arguments to c types. c_categories = py_to_c(categories, c_type=AnyObjectPtr, type_name=RuntimeType(origin='Vec', args=[T])) c_prob = py_to_c(prob, c_type=ctypes.c_void_p, type_name=QO) c_constant_time = py_to_c(constant_time, c_type=ctypes.c_bool, type_name=bool) c_T = py_to_c(T, c_type=ctypes.c_char_p) c_QO = py_to_c(QO, c_type=ctypes.c_char_p) # Call library function. lib_function = lib.opendp_measurements__make_randomized_response lib_function.argtypes = [AnyObjectPtr, ctypes.c_void_p, ctypes.c_bool, ctypes.c_char_p, ctypes.c_char_p] lib_function.restype = FfiResult output = c_to_py(unwrap(lib_function(c_categories, c_prob, c_constant_time, c_T, c_QO), Measurement)) return output
[docs] @versioned def make_randomized_response_bool( prob, constant_time: bool = False, QO: RuntimeTypeDescriptor = None ) -> Measurement: """Make a Measurement that implements randomized response on a boolean value. [make_randomized_response_bool in Rust documentation.](https://docs.rs/opendp/latest/opendp/measurements/fn.make_randomized_response_bool.html) **Supporting Elements:** * Input Domain: `AtomDomain<bool>` * Output Type: `bool` * Input Metric: `DiscreteDistance` * Output Measure: `MaxDivergence<QO>` :param prob: Probability of returning the correct answer. Must be in `[0.5, 1)` :param constant_time: Set to true to enable constant time. Slower. :type constant_time: bool :param QO: Data type of probability and output distance. :type QO: :py:ref:`RuntimeTypeDescriptor` :rtype: Measurement :raises TypeError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ assert_features("contrib") # Standardize type arguments. QO = RuntimeType.parse_or_infer(type_name=QO, public_example=prob) # Convert arguments to c types. c_prob = py_to_c(prob, c_type=ctypes.c_void_p, type_name=QO) c_constant_time = py_to_c(constant_time, c_type=ctypes.c_bool, type_name=bool) c_QO = py_to_c(QO, c_type=ctypes.c_char_p) # Call library function. lib_function = lib.opendp_measurements__make_randomized_response_bool lib_function.argtypes = [ctypes.c_void_p, ctypes.c_bool, ctypes.c_char_p] lib_function.restype = FfiResult output = c_to_py(unwrap(lib_function(c_prob, c_constant_time, c_QO), Measurement)) return output