Find the highest-utility (d_in
, d_out
)-close Transformation or Measurement.
Source: R/mod.R
binary_search_chain.Rd
Searches for the numeric parameter to make_chain
that results in a computation
that most tightly satisfies d_out
when datasets differ by at most d_in
,
then returns the Transformation or Measurement corresponding to said parameter.
Arguments
- make_chain
a function that takes a number and returns a Transformation or Measurement
- d_in
how far apart input datasets can be
- d_out
how far apart output datasets or distributions can be
- bounds
a 2-tuple of the lower and upper bounds on the input of
make_chain
- .T
type of argument to
make_chain
, either "float" or "int"
Details
See binary_search_param
to retrieve the discovered parameter instead of the complete computation chain.
Examples
enable_features("contrib")
# create a sum transformation over the space of float vectors
s_vec <- c(vector_domain(atom_domain(.T = "float")), symmetric_distance())
#> Error in .Call("domains__atom_domain", bounds, nullable, .T, rt_parse(.T.bounds), log, PACKAGE = "opendp"): "domains__atom_domain" not available for .Call() for package "opendp"
t_sum <- s_vec |> then_clamp(c(0., 1.)) |> then_sum()
#> Error: object 's_vec' not found
# find a measurement that satisfies epsilon = 1 when datasets differ by at most one record
m_sum <- binary_search_chain(\(s) t_sum |> then_laplace(s), d_in = 1L, d_out = 1.)
#> Error in exponential_bounds_search(predicate, .T): unable to infer type `.T`; pass the type `.T` or bounds