This documentation is for an old version of OpenDP.

The current release of OpenDP is v0.11.1.

Source code for opendp.meas

# Auto-generated. Do not edit.
from opendp._convert import *
from opendp._lib import *
from opendp.mod import *
from opendp.typing import *


[docs] def make_base_laplace( scale, D: RuntimeTypeDescriptor = "AllDomain<T>" ) -> Measurement: """Make a Measurement that adds noise from the laplace(`scale`) distribution to a scalar value. Adjust D to noise vector-valued data. `This constructor is supported by the linked proof. <https://www.overleaf.com/read/brvrprjhrhwb>`_ :param scale: Noise scale parameter of the laplace distribution. :param D: Domain of the data type to be privatized. Valid values are VectorDomain<AllDomain<T>> or AllDomain<T> :type D: RuntimeTypeDescriptor :return: A base_laplace step. :rtype: Measurement :raises AssertionError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type-argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ assert_features("floating-point") # Standardize type arguments. D = RuntimeType.parse(type_name=D, generics=["T"]) T = get_domain_atom_or_infer(D, scale) D = D.substitute(T=T) # Convert arguments to c types. scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=T) D = py_to_c(D, c_type=ctypes.c_char_p) # Call library function. function = lib.opendp_meas__make_base_laplace function.argtypes = [ctypes.c_void_p, ctypes.c_char_p] function.restype = FfiResult return c_to_py(unwrap(function(scale, D), Measurement))
[docs] def make_base_gaussian( scale, D: RuntimeTypeDescriptor = "AllDomain<T>" ) -> Measurement: """Make a Measurement that adds noise from the gaussian(`scale`) distribution to the input. Adjust D to noise vector-valued data. :param scale: noise scale parameter to the gaussian distribution :param D: Domain of the data type to be privatized. Valid values are VectorDomain<AllDomain<T>> or AllDomain<T> :type D: RuntimeTypeDescriptor :return: A base_gaussian step. :rtype: Measurement :raises AssertionError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type-argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ assert_features("floating-point") # Standardize type arguments. D = RuntimeType.parse(type_name=D, generics=["T"]) T = get_domain_atom_or_infer(D, scale) D = D.substitute(T=T) # Convert arguments to c types. scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=T) D = py_to_c(D, c_type=ctypes.c_char_p) # Call library function. function = lib.opendp_meas__make_base_gaussian function.argtypes = [ctypes.c_void_p, ctypes.c_char_p] function.restype = FfiResult return c_to_py(unwrap(function(scale, D), Measurement))
[docs] def make_base_geometric( scale, bounds: Any = None, D: RuntimeTypeDescriptor = "AllDomain<i32>", QO: RuntimeTypeDescriptor = None ) -> Measurement: """Make a Measurement that adds noise from the geometric(`scale`) distribution to the input. Adjust D to noise vector-valued data. :param scale: noise scale parameter to the geometric distribution :param bounds: Set bounds on the count to make the algorithm run in constant-time. :type bounds: Any :param D: Domain of the data type to be privatized. Valid values are VectorDomain<AllDomain<T>> or AllDomain<T> :type D: RuntimeTypeDescriptor :param QO: Data type of the sensitivity, scale, and budget. :type QO: RuntimeTypeDescriptor :return: A base_geometric step. :rtype: Measurement :raises AssertionError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type-argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ # Standardize type arguments. D = RuntimeType.parse(type_name=D) QO = RuntimeType.parse_or_infer(type_name=QO, public_example=scale) T = get_domain_atom(D) OptionT = RuntimeType(origin='Option', args=[RuntimeType(origin='Tuple', args=[T, T])]) # Convert arguments to c types. scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=QO) bounds = py_to_c(bounds, c_type=AnyObjectPtr, type_name=OptionT) D = py_to_c(D, c_type=ctypes.c_char_p) QO = py_to_c(QO, c_type=ctypes.c_char_p) # Call library function. function = lib.opendp_meas__make_base_geometric function.argtypes = [ctypes.c_void_p, AnyObjectPtr, ctypes.c_char_p, ctypes.c_char_p] function.restype = FfiResult return c_to_py(unwrap(function(scale, bounds, D, QO), Measurement))
[docs] def make_base_stability( n: int, scale, threshold, MI: SensitivityMetric, TIK: RuntimeTypeDescriptor, TIC: RuntimeTypeDescriptor = "i32" ) -> Measurement: """Make a Measurement that implements a stability-based filtering and noising. :param n: Number of records in the input vector. :type n: int :param scale: Noise scale parameter. :param threshold: Exclude counts that are less than this minimum value. :param MI: Input metric. :type MI: SensitivityMetric :param TIK: Data type of input key- must be hashable/categorical. :type TIK: RuntimeTypeDescriptor :param TIC: Data type of input count- must be integral. :type TIC: RuntimeTypeDescriptor :return: A base_stability step. :rtype: Measurement :raises AssertionError: if an argument's type differs from the expected type :raises UnknownTypeError: if a type-argument fails to parse :raises OpenDPException: packaged error from the core OpenDP library """ assert_features("floating-point") # Standardize type arguments. MI = RuntimeType.parse(type_name=MI) TIK = RuntimeType.parse(type_name=TIK) TIC = RuntimeType.parse(type_name=TIC) # Convert arguments to c types. n = py_to_c(n, c_type=ctypes.c_uint) scale = py_to_c(scale, c_type=ctypes.c_void_p, type_name=MI.args[0]) threshold = py_to_c(threshold, c_type=ctypes.c_void_p, type_name=MI.args[0]) MI = py_to_c(MI, c_type=ctypes.c_char_p) TIK = py_to_c(TIK, c_type=ctypes.c_char_p) TIC = py_to_c(TIC, c_type=ctypes.c_char_p) # Call library function. function = lib.opendp_meas__make_base_stability function.argtypes = [ctypes.c_uint, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_char_p, ctypes.c_char_p, ctypes.c_char_p] function.restype = FfiResult return c_to_py(unwrap(function(n, scale, threshold, MI, TIK, TIC), Measurement))