opendp.meas module#
- opendp.meas.make_base_gaussian(scale, D='AllDomain<T>')[source]#
Make a Measurement that adds noise from the gaussian(scale) distribution to the input. Adjust D to noise vector-valued data.
- Parameters:
scale – noise scale parameter to the gaussian distribution
D (RuntimeTypeDescriptor) – Domain of the data type to be privatized. Valid values are VectorDomain<AllDomain<T>> or AllDomain<T>
- Returns:
A base_gaussian step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.meas.make_base_geometric(scale, bounds=None, D='AllDomain<i32>', QO=None)[source]#
Make a Measurement that adds noise from the geometric(scale) distribution to the input. Adjust D to noise vector-valued data.
- Parameters:
scale – noise scale parameter to the geometric distribution
bounds (Any) – Set bounds on the count to make the algorithm run in constant-time.
D (RuntimeTypeDescriptor) – Domain of the data type to be privatized. Valid values are VectorDomain<AllDomain<T>> or AllDomain<T>
QO (RuntimeTypeDescriptor) – Data type of the sensitivity, scale, and budget.
- Returns:
A base_geometric step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.meas.make_base_laplace(scale, D='AllDomain<T>')[source]#
Make a Measurement that adds noise from the laplace(scale) distribution to a scalar value. Adjust D to noise vector-valued data.
This constructor is supported by the linked proof.
- Parameters:
scale – Noise scale parameter of the laplace distribution.
D (RuntimeTypeDescriptor) – Domain of the data type to be privatized. Valid values are VectorDomain<AllDomain<T>> or AllDomain<T>
- Returns:
A base_laplace step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library
- opendp.meas.make_base_stability(n, scale, threshold, MI, TIK, TIC='i32')[source]#
Make a Measurement that implements a stability-based filtering and noising.
- Parameters:
n (int) – Number of records in the input vector.
scale – Noise scale parameter.
threshold – Exclude counts that are less than this minimum value.
MI (SensitivityMetric) – Input metric.
TIK (RuntimeTypeDescriptor) – Data type of input key- must be hashable/categorical.
TIC (RuntimeTypeDescriptor) – Data type of input count- must be integral.
- Returns:
A base_stability step.
- Return type:
- Raises:
AssertionError – if an argument’s type differs from the expected type
UnknownTypeError – if a type-argument fails to parse
OpenDPException – packaged error from the core OpenDP library